
Privacy Amplification via Random Check-Ins

Borja Balle∗ Peter Kairouz† H. Brendan McMahan† Om Thakkar†

Abhradeep Thakurta‡

July 30, 2020

Abstract

Differentially Private Stochastic Gradient Descent (DP-SGD) forms a fundamental building block in many appli-
cations for learning over sensitive data. Two standard approaches, privacy amplification by subsampling, and privacy
amplification by shuffling, permit adding lower noise in DP-SGD than via naı̈ve schemes. A key assumption in both
these approaches is that the elements in the data set can be uniformly sampled, or be uniformly permuted — con-
straints that may become prohibitive when the data is processed in a decentralized or distributed fashion. In this paper,
we focus on conducting iterative methods like DP-SGD in the setting of federated learning (FL) wherein the data is
distributed among many devices (clients). Our main contribution is the random check-in distributed protocol, which
crucially relies only on randomized participation decisions made locally and independently by each client. It has
privacy/accuracy trade-offs similar to privacy amplification by subsampling/shuffling. However, our method does not
require server-initiated communication, or even knowledge of the population size. To our knowledge, this is the first
privacy amplification tailored for a distributed learning framework, and it may have broader applicability beyond FL.
Along the way, we improve the privacy guarantees of amplification by shuffling and show that, in practical regimes,
this improvement allows for similar privacy and utility using data from an order of magnitude fewer users.

1 Introduction
Modern mobile devices and web services benefit significantly from large-scale machine learning, often involving
training on user (client) data. When such data is sensitive, steps must be taken to ensure privacy, and a formal guarantee
of differential privacy (DP) [15, 16] is the gold standard. For this reason, DP has been adopted by companies including
Google [9, 18, 20], Apple [2], Microsoft [13], and LinkedIn [31], as well as the US Census Bureau [26].

Other privacy-enhancing techniques can be combined with DP to obtain additional benefits. In particular, cross-
device federated learning (FL) [27] allows model training while keeping client data decentralized (each participating
device keeps its own local dataset, and only sends model updates or gradients to the coordinating server). However,
existing approaches to combining FL and DP make a number of assumptions that are unrealistic in real-world FL
deployments such as [10]. To highlight these challenges, we must first review the state-of-the-art in centralized DP
training, where differentially private stochastic gradient descent (DP-SGD) [1, 8, 34] is ubiquitous. It achieves optimal
error for convex problems [8], and can also be applied to non-convex problems, including deep learning, where the
privacy amplification offered by randomly subsampling data to form batches is critical for obtaining meaningful DP
guarantees [1, 5, 8, 25, 37].

Attempts to combine FL and the above lines of DP research have been made previously; notably, [3, 28] extended
the approach of [1] to FL and user-level DP. However, these works and others in the area sidestep a critical issue: the
DP guarantees require very specific sampling or shuffling schemes assuming, for example, that each client participates
in each iteration with a fixed probability. While possible in theory, such schemes are incompatible with the practical
constraints and design goals of cross-device FL protocols [10]; to quote [23], a comprehensive recent FL survey, “such

∗DeepMind. bballe@google.com
†Google. {kairouz, mcmahan, omthkkr}@google.com
‡Google Research - Brain. {athakurta}@google.com

1

a sampling procedure is nearly impossible in practice.”1 The fundamental challenge is that clients decide when they
will be available for training and when they will check in to the server, and by design the server cannot index specific
clients. In fact, it may not even know the size of the participating population.

Our work targets these challenges. Our primary goal is to provide strong central DP guarantees for the final
model released by FL-like protocols, under the assumption of a trusted2 orchestrating server. This is accomplished
by building upon recent work on amplification by shuffling [6, 12, 18, 19, 22] and combining it with new analysis
techniques targeting FL-specific challenges (e.g., client-initiated communications, non-addressable global population,
and constrained client availability).

We propose the first privacy amplification analysis specifically tailored for distributed learning frameworks. At
the heart of our result is a novel technique, called random check-in, that relies only on randomness independently
generated by each individual client participating in the training procedure. We show that distributed learning protocols
based on random check-ins can attain privacy gains similar to privacy amplification by subsampling/shuffling (see
Table 1 for a comparison), while requiring minimal coordination from the server. While we restrict our exposition to
distributed DP-SGD within the FL framework for clarity and concreteness (see Figure 1 for a schematic of one of our
protocols), we note that the techniques used in our analyses are broadly applicable to any distributed iterative method
and might be of interest in other applications3.

(a) (b)

Figure 1: A schematic of the Random Check-ins protocol with Fixed Windows (Section 3.1) for Distributed DP-SGD
(Algorithm 1). For the central DP guarantee, all solid arrows represent communication over privileged channels not
accessible to any external adversary. (a) n clients performing random check-ins with a fixed window of m time steps.
‘X’ denotes that the client randomly chose to abstain from participating. (b) A time step at the server, where for
training time i ∈ [m], the server selects a client j from those who checked-in for time i, requests an update for model
θi, and then updates the model to θi+1 (or gradient accumulator if using minibatches).

Contributions The main contributions of this paper can be summarized as follows:
1. We propose random check-ins, the first privacy amplification technique for distributed systems with minimal server-

side overhead. We also instantiate three distributed learning protocols that use random check-ins, each addressing
different natural constraints that arise in applications.

2. We provide formal privacy guarantees for our protocols, and show that random check-ins attain similar rates of
privacy amplification as subsampling and shuffling while reducing the need for server-side orchestration. We also

1In cross-silo FL applications [23], an enumerated set of addressable institutions or data-silos participate in FL, and so explicit server-mediated
subsampling or shuffling using existing techniques may be feasible.

2Notably, our guarantees are obtained by amplifying the privacy provided by local DP randomizers; we treat this use of local DP as an
implementation detail in accomplishing the primary goal of central DP. As a byproduct, our approach offers (weaker) local DP guarantees even in
the presence of an untrusted server.

3In particular, the Federated Averaging [27] algorithm, which computes an update based on multiple local SGD steps rather than a single
gradient, can immediately be plugged into our framework.

2

0.2 0.4 0.6 0.8 1.0
ε0

0.0

0.2

0.4

0.6

0.8

1.0

ε
EFMRTT’19

Theorem 5.1

n = 103

n = 104

n = 105

EFMRTT’19

Theorem 5.1

n = 103

n = 104

n = 105

Figure 2: Values of ε (for δ = 10−6) after amplification by shuf-
fling of ε0-DP local randomizers obtained from: Theorem 5.1 (solid
lines) and [19, Theorem 7] (dotted lines). The grey line represents the
threshold of no amplification (ε = ε0); after crossing the line amplifi-
cation bounds become vacuous. Observe that our bounds with n = 103

and n = 104 are similar to the bounds from [19] with n = 104 and
n = 105, respectively.

provide utility guarantees for one of our protocols in the convex case that match the optimal privacy/accuracy trade-
offs for DP-SGD in the central setting [7].

3. As a byproduct of our analysis, we improve privacy amplification by shuffling [19] on two fronts. For the case
of ε0-DP local randomizers, we improve the dependency of the final central DP ε by a factor of O(e0.5ε0). Fig-
ure 2 provides a numerical comparison of the bound from [19] with our bound; for typical parameter values this
improvement allows us to provide similar privacy guarantees while reducing the number of required users by one
order of magnitude. We also extend the analysis to the case of (ε0, δ0)-DP local randomizers, including Gaussian
randomizers that are widely used in practice.

Related work Our work considers the paradigm of federated learning as a stylized example throughout the paper.
We refer the reader to [23] for an excellent overview of the state-of-the-art in federated learning, along with a suite of
interesting open problems. There is a rich literature on studying differentially private ERM via DP-SGD [1, 8, 30, 34,
35, 39]. However, constraints such as limited availability in distributed settings restrict direct applications of existing
techniques. There is also a growing line of works on privacy amplification by shuffling [4, 6, 9, 12, 18, 19, 22]
that focus on various ways in which protocols can be designed using trusted shuffling primitives. Lastly, privacy
amplification by iteration [21] is another recent advancement that can be applied in an iterative distributed setting, but
it is limited to convex objectives.

2 Background and Problem Formulation
Differential Privacy To formally introduce our notion of privacy, we first define neighboring data sets. We will refer
to a pair of data sets D,D′ ∈ Dn as neighbors if D′ can be obtained from D by modifying one sample di ∈ D for
some i ∈ [n].

Definition 2.1 (Differential privacy [15, 16]). A randomized algorithm A : Dn → S is (ε, δ)-differentially private
if, for any pair of neighboring data sets D,D′ ∈ Dn, and for all events S ⊆ S in the output range of A, we have
Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ.

For meaningful central DP guarantees (i.e., when n > 1), ε is assumed to be a small constant, and δ � 1/n. The
case δ = 0 is often referred to as pure DP (in which case, we just write ε-DP). We shall also use the term approximate
DP when δ > 0.

Adaptive differentially private mechanisms occur naturally when constructing complex DP algorithms, for e.g.,
DP-SGD. In addition to the dataset D, adaptive mechanisms also receive as input the output of other differentially
private mechanisms. Formally, we say that an adaptive mechanism A : S ′ × Dn → S is (ε, δ)-DP if the mechanism
A(s′, •) is (ε, δ)-DP for every s′ ∈ S ′.

3

Specializing Definition 2.1 to the case n = 1 gives what we call a local randomizer, which provides a local DP
guarantee. Local randomizers are the typical building blocks of local DP protocols where individuals privatize their
data before sending it to an aggregator for analysis [25].

Problem Setup The distributed learning setup we consider in this paper involves n clients, where each client j ∈ [n]
holds a data record4 dj ∈ D, j ∈ [n], forming a distributed data set D = (d1, . . . , dn). We assume a coordinating
server wants to train the parameters θ ∈ Θ of a model by using the dataset D to perform stochastic gradient descent
steps according to some loss function ` : D×Θ→ R+. The server’s goal is to protect the privacy of all the individuals
in D by providing strong DP guarantees against an adversary that can observe the final trained model as well as all
the intermediate model parameters. We assume the server is trusted, all devices adhere to the prescribed protocol (i.e.,
there are no malicious users), and all server-client communications are privileged (i.e., they cannot be detected or
eavesdropped by an external adversary).

The server starts with model parameters θ1 and over a sequence of m time slots produces a sequence of model
parameters θ2, . . . , θm+1. Our random check-ins technique allows clients to independently decide when to offer their
contributions for a model update. If and when a client’s contribution is accepted by the server, she uses the current
parameters θ and her data d to send a privatized gradient of the form Aldp(∇θ`(d, θ)) to the server, where Aldp is a
DP local randomizer (e.g., performing gradient clipping and adding Gaussian noise [1]).

Our results consider three different setups inspired by practical applications [10]: (1) The server uses m� n time
slots, where at most one user’s update is used in each slot, for a total of m/b minibatch SGD iterations. It is assumed
all n users are available for the duration of the protocol, but the server does not have enough bandwidth to process
updates from every user (Section 3.1); (2) The server uses m ≈ n/b time slots, and all n users are available for the
duration of the protocol (Section 4.1). On average, b users contribute updates to each time slot, and so, we take m
minibatch SGD steps; (3) As with (2), but each user is only available during a small window of time relative to the
duration of the protocol (Section 4.2).

3 Distributed Learning with Random Check-Ins
This section presents the random check-ins technique for privacy amplification in the context of distributed learning.
We formally define the random check-ins procedure, describe a fully distributed DP-SGD protocol with random check-
ins, and analyze its privacy and utility guarantees.

3.1 Random Check-Ins with a Fixed Window
Consider the distributed learning setup described in Section 2 where each client is willing to participate in the training
procedure as long as their data remains private. To boost the privacy guarantees provided by the local randomizer
Aldp, we will let clients volunteer their updates at a random time slot of their choosing. This randomization has
a similar effect on the uncertainty about the use of an individual’s data on a particular update as the one provided
by uniform subsampling or shuffling. We formalize this concept using the notion of random check-in, which can be
informally expressed as a client in a distributed iterative learning framework randomizing their instant of participation,
and determining with some probability whether to participate in the process at all.

Definition 3.1 (Random check-in). Let A be a distributed learning protocol with m check-in time slots. For a set
Rj ⊆ [m] and probability pj ∈ [0, 1], client j performs an (Rj , pj)-check-in in the protocol if with probability pj she
requests the server to participate in A at time step I u.a.r.←−−− Rj , and otherwise abstains from participating. If pj = 1,
we alternatively denote it as an Rj-check-in.

Our first distributed learning protocol based on random check-ins is presented in Algorithm 1. Client j indepen-
dently decides in which of the possible time steps (if any) she is willing to participate by performing an (Rj , pj)-
check-in. We set Rj = [m] for all j ∈ [n], and assume5 all n clients are available throughout the duration of the

4Each client is identified as a user. In a general FL setting, each dj can correspond to a local data set [10].
5We make this assumption only for utility; the privacy guarantees are independent of this assumption.

4

Server-side protocol:
parameters: local randomizer Aldp, number of steps m

Initialize model θ1 ∈ Θ
Initialize gradient accumulator g1 ← 0p

for i ∈ [m] do
Si ← {j : User(j) checked-in at time i}
if Si is empty then
g̃i ← Aldp (0p) // Dummy gradient

else
Sample Ji

u.a.r.←−−− Si
Request User(Ji) for update to model θi
Receive g̃i from User(Ji)

(θi+1, gi+1)← ModelUpdate(θi, gi + g̃i, i)
Output θi+1

Client-side protocol for User(j):
parameters: check-in window Rj , check-in probability pj ,
loss function `, local randomizer Aldp
private inputs: datapoint dj ∈ D

if a pj-biased coin returns heads then
Check-in with the server at time I u.a.r.←−−− Rj
if receive request for update to model θI then
g̃I ← Aldp(∇θ`(dj , θI))
Send g̃I to server

ModelUpdate(θ, g, i):
parameters: batch size b, learning rate η

if i mod b = 0 then
return

(
θ − η

b
g, 0p

)
// Gradient descent step

else
return (θ, g) // Skip update

Algorithm 1: Afix – Distributed DP-SGD with random check-ins (fixed window).

protocol. On the server side, at each time step i ∈ [m], a random client Ji among all the ones that checked-in at
time i is queried: this client receives the current model θi, locally computes a gradient update∇θ`(dJi , θi) using their
data dJi , and returns to the server a privatized version of the gradient obtained using a local randomizer Aldp. Clients
checked-in at time i that are not selected do not participate in the training procedure. If at time i no client is available,
the server adds a “dummy” gradient to update the model.

3.2 Privacy Analysis
From a privacy standpoint, Algorithm 1 shares an important pattern with DP-SGD: each model update uses noisy
gradients obtained from a random subset of the population. However, there exist two key factors that make the privacy
analysis of our protocol more challenging than the existing analysis based on subsampling and shuffling. First, unlike
in the case of uniform sampling where the randomness in each update is independent, here there is a correlation
induced by the fact that clients that check-in into one step cannot check-in into a different step. Second, in shuffling
there is also a similar correlation between updates, but there we can ensure each update uses the same number of
datapoints, while here the server does not control the number of clients that will check-in into each individual step.
Nonetheless, the following result shows that random check-ins provides a factor of privacy amplification comparable
to these techniques.

Theorem 3.2 (Amplification via random check-ins into a fixed window). SupposeAldp is an ε0-DP local randomizer.
Let Afix : Dn → Θm be the protocol from Algorithm 1 with check-in probability pj = p0 and check-in window

Rj = [m] for each client j ∈ [n]. For any δ ∈ (0, 1), algorithmAfix is (ε, δ)-DP with ε = p0(eε0−1)
√

2eε0 log (1/δ)
m +

p20e
ε0 (eε0−1)2

2m . In particular, for ε0 ≤ 1 and δ ≤ 1/100, we get ε ≤ 7p0ε0

√
log(1/δ)

m . Furthermore, if Aldp is

(ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then Afix is (ε′, δ′)-DP with ε′ =
p20e

8ε0 (e8ε0−1)2

2m + p0(e8ε0 −

1)
√

2e8ε0 log (1/δ)
m and δ′ = δ +m(eε

′
+ 1)δ1.

Remark 1 We can always increase privacy in the above statement by decreasing p0. However, this will also increase
the number of dummy updates, which suggests choosing p0 = Θ(m/n). With such a choice, we obtain an amplifica-
tion factor of

√
m/n. Critically, however, exact knowledge of the population size is not required to have a precise DP

guarantee above.

5

Remark 2 At first look, the amplification factor of
√
m/nmay appear stronger than the typical 1/

√
n factor obtained

via uniform subsampling/shuffling. Note that one run of our technique providesm updates (as opposed to n updates via
the other methods). When the server has sufficient capacity, we can set m = n to recover a 1/

√
n amplification. The

primary advantage of our approach is that we can benefit from amplification in terms of n even if only a much smaller
number of updates are actually processed. We can also extend our approach to recover the 1/

√
n amplification even

when the server is rate limited (p0 = m/n), by repeating the protocolAfix adaptively n/m times to get Corollary 3.3
from Theorem 3.2 and applying advanced composition for DP [17].

Corollary 3.3. For algorithm Afix : Dn → Θm described in Theorem 3.2, suppose Aldp is an ε0-DP local random-

izer s.t. ε0 ≤
2 log (n/8

√
m)

3 , and n ≥ (eε0 − 1)2eε0
√
m log (1/β). Setting p0 = m

n , and running n
m repetitions of

Afix results in a total of n updates, along with an overall central (ε, δ)-DP guarantee with ε = Õ
(
e1.5ε0/

√
n
)

and
δ ∈ (0, 1), where Õ(·) hides polylog factors in 1/β and 1/δ.

Comparison to Existing Privacy Amplification Techniques Table 1 provides a comparison of the bound in Corol-
lary 3.3 to other existing techniques, for performing one epoch of training (i.e., use one update from each client). Note
that for this comparison, we assume that ε0 > 1, since for ε0 ≤ 1 all the shown amplification bounds can be written
as O (ε0/

√
n). “None” denotes a naı̈ve scheme (with no privacy amplification) where each client is used exactly once

in any arbitrary order. Also, note that in general, the guarantees via privacy amplification by subsampling/shuffling
apply only under the assumption of complete participation availability6 of each client. Thus, they define the upper
limits of achieving such amplifications. Also, note that even though the bound in Corollary 3.3 appears better than
amplification via shuffling, our technique does include dummy updates which do not occur in the other techniques.
For linear optimization problems, it is easy to see that our technique will add a factor of e more noise as compared to
the other two privacy amplification techniques at the same privacy level.

Source of Privacy Amplification ε for Central DP
None [14, 33] ε0

Uniform subsampling [1, 8, 25] O (eε0/
√
n)

Shuffling [19] O
(
e3ε0/

√
n
)

Shuffling (Theorem 5.1, This paper) O
(
e2.5ε0/

√
n
)

Random check-ins with a fixed window O
(
e1.5ε0/

√
n
)

(Theorem 3.2, This paper)

Table 1: Comparison with existing amplifi-
cation techniques for a data set of size n, run-
ning n iterations of DP-SGD with batch size
of 1 and ε0-DP local randomizers. For ease of
exposition, we assume (eε0 − 1) ≈ ε0, and
hide polylog factors in n and 1/δ.

Proof Sketch for Theorem 3.2 Here, we provide a summary of the argument7 used to prove Theorem 3.2 in the
case δ0 = 0. First, note that it is enough to argue about the privacy of the sequence of noisy gradients g̃1:m by post-
processing. Also, the role each client plays in the protocol is symmetric, so w.l.o.g. we can consider two datasetsD,D′

differing in the first position. Next, we imagine that the last n − 1 clients make the same random check-in choices
in Afix(D) and Afix(D′). Letting ci denote the number of such clients that check-in into step i ∈ [n], we model
these choices by a pair of sequences F = (d̄1:m, w1:m) where d̄i ∈ D ∪ {⊥} is the data record of an arbitrary client
who checked-in into step i (with ⊥ representing a “dummy” data record if no client checked-in), and wi = 1/(ci + 1)
represents the probability that client 1’s data will be picked to participate in the protocol at step i if she checks-in in step
i. Conditioned on these choices, the noisy gradients g̃1:m produced by Afix(D) can be obtained by: (1) initializing a
dataset D̃ = (d̄1:m); (2) sampling I u.a.r.←−−− [m], and replacing d̄I with d1 in D̃ w.p. p0wI ; (3) producing the outputs
g̃1:m by applying a sequence of ε0-DP adaptive local randomizers to D̃ = (d̃1:m) by setting g̃i = A(i)(d̃i, g̃1:i−1).
Here each of the A(i) uses all past gradients to compute the model θi and return g̃i = Aldp(∇θ`(d̃i, θi)).

6By a complete participation availability for a client, we mean that the client should be available to participate when requested by the server for
any time step(s) of training.

7Full proofs for every result in the paper are provided in Appendix A.

6

The final step involves a variant of the amplification by swapping technique [19, Theorem 8] which we call am-
plification by probable replacement. The key idea is to reformulate the composition of the A(i) applied to the random
dataset D̃, to a composition of mechanisms of the form g̃i = B(i)(d1, F, g̃1:i−1). Mechanism B(i) uses the gradient his-
tory to compute qi = Pr[I = i|g̃1:i−1] and returnsA(i)(d1, g̃1:i−1) with probability p0wiqi, andA(i)(d̄i, g̃1:i−1) other-
wise. Note that before the process begins, we have Pr[I = i] = 1/m for every i; our analysis shows that the posterior
probability after observing the first i− 1 gradients is not too far from the prior: qi ≤ eε0

meε0−(eε0−1)(i−1) . The desired

bound is then obtained by using the overlapping mixtures technique [5] to show that B(i) is log(1 +p0qi(e
ε0 −1))-DP

with respect to changes on d1, and heterogeneous advanced composition [24] to compute the final ε of composing the
B(i) adaptively.

3.3 Utility Analysis
Proposition 3.4 (Dummy updates in random check-ins with a fixed window). For algorithm Afix : Dn → Θm

described in Theorem 3.2, the expected number of dummy updates performed by the server is at most
(
m
(
1− p0

m

)n)
.

For c > 0 if p0 = cm
n , we get at most mec expected dummy updates.

Utility for Convex ERMs We now instantiate our amplification theorem (Theorem 3.2) in the context of differen-
tially private empirical risk minimization (ERM). For convex ERMs, we will show that DP-SGD [1, 8, 34] in con-
junction with our privacy amplification theorem (Theorem 3.2) is capable of achieving the optimal privacy/accuracy
trade-offs [8].

Theorem 3.5 (Utility guarantee). Suppose in algorithm Afix : Dn → Θm described in Theorem 3.2 the loss ` :
D × Θ → R+ is L-Lipschitz and convex in its second parameter and the model space Θ has dimension p and
diameter R, i.e., supθ,θ′∈Θ ‖θ − θ′‖ ≤ R. Furthermore, let D be a distribution on D, define the population risk
L (D ; θ) = Ed∼D [`(d; θ)], and let θ∗ = arg minθ∈Θ L (D ; θ). If Aldp is a local randomizer that adds Gaussian

noise with variance σ2, and the learning rate for a model update at step i ∈ [m] is set to be ηi =
R(1−2e−np0/m)√

(pσ2+L2)i
, then

the output θm of Afix(D) on a dataset D containing n i.i.d. samples from D satisfies8

ED,θm [L (D ; θm)]−L (D ; θ∗) = Õ

(√
pσ2 + L2 ·R(

1− 2e−np0/m
)√

m

)
.

Remark 3 Note that as m → n, it is easy to see for p0 = Ω
(
m
n

)
that Theorem 3.5 achieves the optimal population

risk trade-off [7, 8].

4 Variations: Thrifty Updates, and Sliding Windows
This section presents two variants of the main protocol from the previous section. The first variant makes a better use
of the updates provided by each user at the expense of a small increase in the privacy cost. The second variant allows
users to check-in into a sliding window to model the case where different users might be available during different
time windows.

4.1 Leveraging Updates from Multiple Users
Now, we present a variant of Algorithm 1 which, at the expense of a mild increase in the privacy cost, removes the

need for dummy updates, and for discarding all but one of the clients checked-in at every time step. The server-side
protocol of this version is given in Algorithm 2 (the client-side protocol is identical as Algorithm 1). Note that here,
if no client checked-in at some step i ∈ [m], the server simply skips the update. Furthermore, if at some step multiple

8Here, Õ hides a polylog factor in m.

7

Server-side protocol:
parameters: total update steps m

Initialize model θ1 ∈ Rp
for i ∈ [m] do
Si ← {j : User(j) checks-in for index i}
if Si is empty then
θi+1 ← θi

else
g̃i ← 0
for j ∈ Si do

Request User(j) for update to model θi
Receive g̃i,j from User(j)
g̃i ← g̃i + g̃i,j

θi+1 ← θi − η
|Si| g̃i

Output θi+1

Algorithm 2: Aavg - Distributed DP-SGD with random check-ins (averaged updates).

clients checked in, the server requests gradients from all the clients, and performs a model update using the average of
the submitted noisy gradients.

These changes have the obvious advantage of reducing the noise in the model coming from dummy updates, and
increasing the algorithm’s data efficiency by utilizing gradients provided by all available clients. The corresponding
privacy analysis becomes more challenging because (1) the adversary gains information about the time steps where no
clients checked-in, and (2) the server uses the potentially non-private count |Si| of clients checked-in at time i when
performing the model update. Nonetheless, we show that the privacy guarantees of Algorithm 2 are similar to those of
Algorithm 1 with an additional O(e3ε0/2) factor, and the restriction of non-collusion among the participating clients.
For simplicity, we only analyze the case where each client has check-in probability pj = 1.

Theorem 4.1 (Amplification via random check-ins with averaged updates). Suppose Aldp is an ε0-DP local random-
izer. Let Aavg : Dn → Θm be the protocol from Algorithm 2 performing m averaged model updates with check-in
probability pj = 1 and check-in window Rj = [m] for each user j ∈ [n]. Algorithm Aavg is (ε, δ + δ2)-DP with

ε =
e4ε0(eε0 − 1)2ε2

1

2
+ e2ε0(eε0 − 1)ε1

√
2 log(1/δ) ,

where ε1 =
√

1
n + 1

m +
√

log(1/δ2)
n . In particular, for ε0 ≤ 1 we get ε = O(ε0/

√
m). Furthermore, if Aldp is

(ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then Aavg is (ε′, δ′)-DP with ε′ =
e32ε0 (e8ε0−1)2ε21

2 + e16ε0(e8ε0 −

1)ε1

√
2 log(1/δ) and δ′ = δ + δ2 +m(eε

′
+ 1)δ1.

Next, we provide a utility guarantee for Aavg in terms of the excess population risk for convex ERMs (similar to
Theorem 3.5).

Theorem 4.2 (Utility guarantee). Suppose in algorithm Aavg : Dn → Θm described in Theorem 4.1 the loss ` :
D × Θ → R+ is L-Lipschitz and convex in its second parameter and the model space Θ has dimension p and
diameter R, i.e., supθ,θ′∈Θ ‖θ − θ′‖ ≤ R. Furthermore, let D be a distribution on D, define the population risk
L (D ; θ) = Ed∼D [`(d; θ)], and let θ∗ = arg minθ∈Θ L (D ; θ). If Aldp is a local randomizer that adds Gaussian
noise with variance σ2, and the learning rate for a model update at step i ∈ [m] is set to be ηi = R

√
n√

(mpσ2+nL2)i
, then

8

the output θm of Aavg(D) on a dataset D containing n i.i.d. samples from D satisfies

ED,θm [L (D ; θm)]−L (D ; θ∗) = Õ

(
R
√
mpσ2 + nL2

√
mn

)
.

Furthermore, if the loss ` is β-smooth in its second parameter and we set the step-size ηi = R
√
n

βR
√
n+m
√
L2+pσ2

, then

we have

ED,θ1,...,θm

[
L

(
D ;

1

m

m∑
i=1

θi

)]
−L (D ; θ∗) = Õ

(
R

√
L2 + pσ2

n
+
βR2

m

)
.

Comparison to Algorithm 1 in Section 3: Recall that in Afix we can achieve a small fixed ε by taking p0 = m/n

and σ = Õ(p0
ε
√
m

), in which case the excess risk bound in Theorem 3.5 becomes Õ
(√

L2

m + p
ε2n2

)
. On the other

hand, in Aavg we can obtain a fixed small ε by taking σ = Õ
(

1
ε
√
m

)
. In this case the excess risks in Theorem 4.2

are bounded by Õ
(√

L2

m + p
ε2nm

)
in the convex case, and by Õ

(√
L2

n + p
ε2nm + 1

m

)
in the convex and smooth

case. Thus, we observe that all the bounds recover the optimal population risk trade-offs from [7, 8] as m → n, and
for m � n and non-smooth loss Aavg provides a better trade-off than Afix, while on smooth losses Aavg and Afix
are incomparable. Note that Afix (with b = 1) will not attain a better bound on smooth losses because each update
is based on a single data-point. Setting b > 1 will reduce the number of updates to m/b for Afix, whereas to get an
excess risk bound forAfix for smooth losses where more than one data point is sampled at each time step will require
extending the privacy analysis to incorporate the change, which is beyond the scope of this paper.

4.2 Random Check-Ins with a Sliding Window
The second variant we consider removes the need for all clients to be available throughout the training period. Instead,
we assume that the training period comprises of n time steps, and each client j ∈ [n] is only available during a
window of m time steps. Clients perform a random check-in to provide the server with an update during their window
of availability. For simplicity, we assume clients wake up in order, one every time step, so client j ∈ [n] will perform
a random check-in within the window Rj = {j, . . . , j +m− 1}. The server will perform n−m+ 1 updates starting
at time m to provide a warm-up period where the first m clients perform their random check-ins.

Theorem 4.3 (Amplification via random check-ins with sliding windows). Suppose Aldp is an ε0-DP local ran-
domizer. Let Asldw : Dn → Θn−m+1 be the distributed algorithm performing n model updates with check-in
probability pj = 1 and check-in window Rj = {j, . . . , j + m − 1} for each user j ∈ [n]. For any m ∈ [n], al-

gorithm Asldw is (ε, δ)-DP with ε = eε0 (eε0−1)2

2m + (eε0 − 1)
√

2eε0 log (1/δ)
m . For ε0 ≤ 1 and δ ≤ 1/100, we get

ε ≤ 7ε0

√
log(1/δ)

m . Furthermore, if Aldp is (ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then Asldw is (ε′, δ′)-DP

with ε′ = e8ε0 (e8ε0−1)2

2m + (e8ε0 − 1)
√

2e8ε0 log (1/δ)
m and δ′ = δ +m(eε

′
+ 1)δ1.

Remark 4 We can always increase privacy in the statement above by increasing m. However, that also increases
the number of clients who do not participate in training because their scheduled check-in time is before the process
begins, or after it terminates. Moreover, the number of empty slots where the server introduces dummy updates will
also increase, which we would want to minimize for good accuracy. Thus, m introduces a trade-off between accuracy
and privacy.

Proposition 4.4 (Dummy updates in random check-ins with sliding windows). For algorithmAsldw : Dn → Θn−m+1

described in Theorem 4.3, the expected number of dummy gradient updates performed by the server is at most (n −
m+ 1)/e.

9

5 Improvements to Amplification via Shuffling
Here, we provide an improvement on privacy amplification by shuffling. This is obtained using two technical lemmas
(deferred to the supplementary material) to tighten the analysis of amplification by swapping, a central component in
the analysis of amplification by shuffling given in [19].

Theorem 5.1 (Amplification via Shuffling). Let A(i) : S(1) × · · · × S(i−1) × D → S(i), i ∈ [n], be a se-
quence of adaptive ε0-DP local randomizers. Let Asl : Dn → S(1) × · · · × S(n) be the algorithm that given
a dataset D = (d1, . . . , dn) ∈ Dn samples a uniform random permutation π over [n], sequentially computes
si = A(i)(s1:i−1, dπ(i)) and outputs s1:n. For any δ ∈ (0, 1), algorithmAsl satisfies (ε, δ)-DP with ε = e3ε0 (eε0−1)2

2n +

e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n . Furthermore, if A(i), i ∈ [n], is (ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then Asl

satisfies (ε′, δ′)-DP with ε′ = e24ε0 (e8ε0−1)2

2n + e12ε0(e8ε0 − 1)
√

2 log (1/δ)
n and δ′ = δ + n(eε

′
+ 1)δ1.

For comparison, the guarantee in [19, Theorem 7] in the case δ0 = 0 results in

ε = 2e2ε0(eε0 − 1)(e
2 exp(2ε0)(eε0−1)

n − 1) + 2e2ε0(eε0 − 1)

√
2 log (1/δ)

n
.

6 Conclusion
Our work highlights the fact that proving DP guarantees for distributed or decentralized systems can be substantially
more challenging than for centralized systems, because in a distributed setting it becomes much harder to precisely
control and characterize the randomness in the system, and this precise characterization and control of randomness is
at the heart of DP guarantees. Specifically, production FL systems do not satisfy the assumptions that are typically
made under state-of-the-art privacy accounting schemes, such as privacy amplification via subsampling. Without
such accounting schemes, service providers cannot provide DP statements with small ε’s. This work, though largely
theoretical in nature, proposes a method shaped by the practical constraints of distributed systems that allows for
rigorous privacy statements under realistic assumptions.

Nevertheless, there is more to do. Our theorems are sharpest in the high-privacy regime (small ε’s), which may be
too conservative to provide sufficient utility for some applications. While significantly relaxed from previous work,
our assumptions will still not hold in all real-world systems. Thus, we hope this work encourages further collaboration
between distributed systems and DP theory researchers in establishing protocols that address the full range of possible
systems constraints as well as improving the full breadth of the privacy vs. utility Pareto frontier.

Acknowledgements
The authors would like to thank Vitaly Feldman for suggesting the idea of privacy accounting in DP-SGD via shuffling,
and for help in identifying and fixing a mistake in the way a previous version of this paper handled (ε0, δ0)-DP local
randomizers.

References
[1] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning

with differential privacy. In Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security
(CCS’16), pages 308–318, 2016.

[2] D. P. T. Apple. Learning with privacy at scale, 2017.

[3] S. Augenstein, H. B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz, M. Chen, R. Mathews, et al. Generative
models for effective ml on private, decentralized datasets. arXiv preprint arXiv:1911.06679, 2019.

10

[4] V. Balcer and A. Cheu. Separating local & shuffled differential privacy via histograms. CoRR, abs/1911.06879,
2019.

[5] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling: Tight analyses via couplings and
divergences. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 6280–6290, 2018.

[6] B. Balle, J. Bell, A. Gascon, and K. Nissim. The privacy blanket of the shuffle model. In Advances in
Cryptology—CRYPTO, 2019.

[7] R. Bassily, V. Feldman, K. Talwar, and A. G. Thakurta. Private stochastic convex optimization with optimal
rates. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 11279–11288, 2019.

[8] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms and tight error
bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on Foundations of Computer Science (FOCS), pages
464–473, 2014.

[9] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie, M. Rudominer, U. Kode, J. Tinnés,
and B. Seefeld. Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 441–459. ACM, 2017.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi,
H. B. McMahan, et al. Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046,
2019.

[11] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R© in Machine Learning,
8(3-4):231–357, 2015.

[12] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy via mixnets. CoRR,
abs/1808.01394, 2018.

[13] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 3571–3580, 2017.

[14] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 429–438. IEEE Computer Society, 2013.

[15] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed
noise generation. In Advances in Cryptology—EUROCRYPT, pages 486–503, 2006.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In
Proc. of the Third Conf. on Theory of Cryptography (TCC), pages 265–284, 2006.

[17] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoret-
ical Computer Science, 9(3–4):211–407, 2014.

[18] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, S. Song, K. Talwar, and A. Thakurta. Encode, shuffle,
analyze privacy revisited: Formalizations and empirical evaluation. CoRR, abs/2001.03618, 2020.

[19] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2468–2479. SIAM, 2019.

11

[20] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proc. of the 2014 ACM Conf. on Computer and Communications Security (CCS’14), pages 1054–1067.
ACM, 2014.

[21] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by iteration. In 59th Annual IEEE
Symp. on Foundations of Computer Science (FOCS), pages 521–532, 2018.

[22] B. Ghazi, R. Pagh, and A. Velingker. Scalable and differentially private distributed aggregation in the shuffled
model. CoRR, abs/1906.08320, 2019.

[23] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cor-
mode, R. Cummings, R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi,
P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi,
G. Joshi, M. Khodak, J. Konecný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri,
R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun,
A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao.
Advances and open problems in federated learning. CoRR, abs/1912.04977, 2019.

[24] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. IEEE Trans. Inf. Theory,
63(6):4037–4049, 2017.

[25] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. D. Smith. What can we learn privately?
In 49th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 531–540, 2008.

[26] Y. Kuo, C. Chiu, D. Kifer, M. Hay, and A. Machanavajjhala. Differentially private hierarchical count-of-counts
histograms. PVLDB, 11(11):1509–1521, 2018.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, pages 1273–1282, 2017.

[28] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private language models without
losing accuracy. CoRR, abs/1710.06963, 2017.

[29] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, 2005.

[30] V. Pichapati, A. T. Suresh, F. X. Yu, S. J. Reddi, and S. Kumar. Adaclip: Adaptive clipping for private sgd. arXiv
preprint arXiv:1908.07643, 2019.

[31] R. Rogers, S. Subramaniam, S. Peng, D. Durfee, S. Lee, S. K. Kancha, S. Sahay, and P. Ahammad. Linkedin’s
audience engagements api: A privacy preserving data analytics system at scale, 2020.

[32] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and
optimal averaging schemes. In International Conference on Machine Learning, pages 71–79, 2013.

[33] A. Smith, A. Thakurta, and J. Upadhyay. Is interaction necessary for distributed private learning? In 2017 IEEE
Symposium on Security and Privacy (SP), pages 58–77. IEEE, 2017.

[34] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information Processing, pages 245–248. IEEE, 2013.

[35] O. Thakkar, G. Andrew, and H. B. McMahan. Differentially private learning with adaptive clipping. CoRR,
abs/1905.03871, 2019.

[36] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):3757, Mar. 1985.

12

[37] Y. Wang, B. Balle, and S. P. Kasiviswanathan. Subsampled renyi differential privacy and analytical moments
accountant. In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18
April 2019, Naha, Okinawa, Japan, pages 1226–1235, 2019.

[38] Y.-X. Wang, S. E. Fienberg, and A. J. Smola. Privacy for free: Posterior sampling and stochastic gradient monte
carlo. In Proceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML15, page 24932502. JMLR.org, 2015.

[39] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton. Bolt-on differential privacy for scalable
stochastic gradient descent-based analytics. In S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu,
editors, Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD, 2017.

13

A Omitted Results and Proofs
Lemma A.1. Let Aldp : D → S be an ε0-DP local randomizer. For D = (d1, . . . , dm) ∈ Dm, q ∈ (0, 1), and
k ∈ [m], define BiasedSamplingq(D, k) to return dk with probability q, and a sample from an arbitrary distribution
over D \ {dk} with probability 1− q. For any k ∈ [m] and any set of outcomes S ⊆ S, we have

Pr [Aldp(dk) ∈ S]

Pr
[
Aldp

(
BiasedSamplingq(D, k)

)
∈ S

] ≤ eε0

1 + q(eε0 − 1)
.

Proof. Fix a set of outcomes S ⊆ S. By ε0-LDP of Aldp, for any d, d′ ∈ D, we get

Pr[Aldp(d) ∈ S]

Pr[Aldp(d′) ∈ S]
≤ eε0 (1)

Now, for dataset D = (d1, . . . , dm) ∈ Dn and k ∈ [m], we have:

Pr [Aldp(dk) ∈ S]

Pr [Aldp(BiasedSamplingq(D, k)) ∈ S]
=

Pr [Aldp(dk) ∈ S]
m∑
j=1

Pr[Aldp(d′) ∈ S]Pr[d′ = dj]

=
1

m∑
j=1

Pr[Aldp(d′)∈S]
Pr [Aldp(dk)∈S] Pr[d′ = dj]

=
1

q +
∑
j 6=k

Pr[Aldp(d′)∈S]
Pr [Aldp(dk)∈S] Pr[d′ = dj]

≤ 1

q + e−ε0
∑
j 6=k

Pr[d′ = dj]

=
1

q + (1− q)e−ε0
=

eε0

1 + q(eε0 − 1)

where the third equality follows as Pr[d = dk] = q, and the first inequality follows using inequality 1, and the fourth
equality follows as

∑
j 6=k

Pr[d = dj] = 1− q.

Lemma A.2. Let A(1), . . . ,A(k) be mechanisms of the form A(i) : S(1) × · · · × S(i−1) × D → S(i). Suppose there
exist constants a > 0 and b ∈ (0, 1) such that each A(i) is εi-DP with εi ≤ log

(
1 + a

k−b(i−1)

)
. Then, for any

δ ∈ (0, 1), the k-fold adaptive composition of A(1), . . . ,A(k) is (ε, δ)-DP with ε = a2

2k(1−b) +
√

2a2 log (1/δ)
k(1−b) .

Proof. We start by applying the heterogeneous advanced composition for DP [24] for the sequence of mechanisms
A1, . . . ,Ak to get (ε, δ)-DP for the composition, where

ε =
∑
i∈[k]

(eεi − 1)εi
eεi + 1

+

√√√√2 log
1

δ

∑
i∈[k]

ε2
i (2)

Let us start by bounding the second term in equation 2. First, observe that:

∑
i∈[k]

ε2
i =

∑
i∈[k]

(
log

(
1 +

a

k − b(i− 1)

))2

≤
∑
i∈[k]

a2

(k − b(i− 1))2
(3)

14

where the first inequality follows from log(1 + x) ≤ x.
Now, we have:

∑
i∈[k]

a2

(k − b(i− 1))2
=

k−1∑
i=0

a2

(k − ib)2
≤ a2

∫ k

0

1

(k − xb)2
dx

= a2

(
1

kb− b2k
− 1

kb

)
=
a2

kb

(
1

1− b
− 1

)
=

a2

k(1− b)
(4)

where the second equality follows as we have
∫

1
(c−dx)2 dx = 1

cd−d2x .
Next, we bound the first term in equation 2 as follows:

∑
i∈[k]

(eεi − 1)εi
eεi + 1

=
∑
i∈[k]

(
a

k−b(i−1)

)(
log
(

1 + a
k−b(i−1)

))
2 + a

k−b(i−1)

≤
∑
i∈[k]

(
a

k−b(i−1)

)2

2 + a
k−b(i−1)

≤
∑
i∈[k]

a2

2 (k − b(i− 1))
2 ≤

a2

2k(1− b)
(5)

where the first inequality follows from log(1 + x) ≤ x, and the last inequality follows from inequality 4.
Using inequalities 3, 4 and 5 in equation 2, we get that the k-fold adaptive composition of A1, . . . ,Ak satisfies

(ε, δ)-DP, for ε = a2

2k(1−b) +
√

2a2 log (1/δ)
k(1−b) .

Lemma A.3. Suppose A : D → S is an (ε0, δ0)-DP local randomizer with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) . Then there

exists an 8ε0-DP local randomizer Ã : D → S such that for any d ∈ D we have TV (A(d), Ã(d)) ≤ δ1.

Proof. The proof is a direct application of results by Cheu et al. [12]. First we recall that from [12, Claims D.2 and
D.5] (applied with n = 1 in their notation) it follows that givenA there exist randomizers Ãk,T which are 8ε0-DP and
satisfy

TV (A(d), Ãk,T (d)) ≤
(

1− ke−2ε0

2

)T
+ (T + 2)

2δ0e
ε0

1− e−ε0

for any k ∈ (0, 2e−2ε0) and T ∈ N as long as δ0 < 1−e−ε0
4eε0 . The result follows from taking k = 2e−3ε0 , T =

ln(2/δ1)/ ln(1/(1− e5ε0)) and noting these choices imply the desired condition on the total variation distance under
our assumption on δ0.

Proof of Corollary 3.3. Setting p0 = m
n in Afix, we get from Theorem 3.2 that β ∈ (0, 1), algorithm Afix satisfies

(ε1, β)-DP for

ε1 =
(eε0 − 1)

√
2meε0 log (1/β)

n
+
meε0(eε0 − 1)2

2n2

≤
2(eε0 − 1)

√
2meε0 log (1/β)

n
(6)

where the inequality follows since n ≥ (eε0 − 1)
√
meε0 .

Now, using inequality 6 and applying advanced composition to n
m repetitions ofAfix, we get

(
ε, nβm + δ

)
-DP, for

ε ≤ ε1

√
2n

m
log (1/δ) +

n

m
ε1 (eε1 − 1) (7)

15

Since ε0 ≤
2 log (n/8

√
m)

3 , we have that ε1 ≤ 1
2 , and thus, (eε1 − 1) ≤ 3ε1

2 . Therefore, we get from inequality 7 that

ε ≤ ε1

√
2n

m
log (1/β) +

3n

2m
ε2

1

≤ 4(eε0 − 1)

√
eε0 log (1/β) log (1/δ)

n
+

12(eε0 − 1)2eε0 log (1/β)

n

= Õ

(
e1.5ε0

√
n

)
where the equality holds since n ≥ (eε0 − 1)2eε0

√
m log (1/β), and Õ(·) hides polylog factors in 1/β and 1/δ.

Proof of Proposition 3.4. In Algorithm 1, for i ∈ [m], we have

Si = {j : User(j) checks-in for index i}

For i ∈ [m], define an indicator random variable Ei that indicates if Si is empty. Note that the server performs a
dummy gradient update for instance i ∈ [n] if and only if Si is empty (or, in other words, Ei = 1). Next, for j ∈ [n],
let Ij denote the index that user j in Algorithm Afix performs her (Rj , pj)-check-in into, where Rj = [m] and
pj = p0. Thus, for index i ∈ [m], we have

Pr [Ei = 1] = Pr

 ⋂
j∈[n]

(
(User j abstains)

⋃
(User j participates ∧ Ij 6= i)

)
=
∏
j∈[n]

((1− p0) + Pr [Ij 6= i] · p0) =

(
(1− p0) +

(
1− 1

m

)
· p0

)n
=
(

1− p0

m

)n
where the second equality follows since the check-ins for each user are independent of the others, and each user
abstains from participating w.p. (1− p0).

Thus, for the expected number of dummy gradient updates, we have:

E(E1:m) =
∑
i∈[m]

Pr [Ei = 1] = m
(

1− p0

m

)n
(8)

If p0 = cm
n for c > 0, from equation 8 we get

E(E1:m) = m
(

1− c

n

)n
≤ m

ec

where the inequality follows as
(
1− a

b

)b ≤ e−a for b > 1, |a| ≤ b.

Proof of Theorem 3.5. To be able to directly apply [32, Theorem 2], our technique Afix needs to satisfy two condi-
tions: i) each model update should be an unbiased estimate of the gradient, and ii) a bound on the expected L2-norm
of the gradient. Notice that in Afix, every client j ∈ [n] performs a ([m], p0)-check-in. This is analogous to a bins-
and-balls setting where n balls are thrown, each with probability p0, into m bins. Thus, for each update step i ∈ [m],
the number of clients checking-in for this step (i.e., |Si| in the notation of Algorithm 1) can be approximated by an
independent Poisson random variable Yi with mean np0/m, using Poisson approximation [29], as follows:

Pr[|Si| = 0] ≤ 2Pr[Yi = 0] = 2e−np0/m := p′

Now, we know that there exists a probability pb ≤ p′ with which the gradient update gi is 0p. Thus, to make
the gradient update unbiased, each participating user can multiply their update by 1

1−pb ≤
1

1−p′ = 1
1−2e−np0/m

.

16

Consequently, the Lipschitz-constant of the loss `, and the variance of the noise added to the update, increases by a
factor of at most 1

(1−2e−np0/m)
2 . Thus, we get E

[
||g̃i||2

]
≤ pσ2+L2

1−2e−np0/m
. With this, our technique will satisfy both

the conditions required to apply the result in [32] for learning rate ηi = c√
i

as follows:

ED,θm [L (D ; θm)]−L (D ; θ∗) ≤
(
R2

c
+

c(pσ2 + L2)

1− 2e−np0/m

)(
2 + log(m)√

m

)
Optimizing the learning rate to be ηi =

R(1−2e−np0/m)√
(pσ2+L2)i

gives the statement of the theorem.

Proof of Theorem 4.2. We prove the first bound on the line of the proof of Theorem 3.5. Since Aavg skips an update
for time step i ∈ [m] if no client checks-in at step i, and otherwise makes an update of the average of the noisy
gradients received by checked-in clients, each update of the algorithm is unbiased. Now, notice that in Aavg , every
client j ∈ [n] checks into [m] u.a.r. Thus, each update step i ∈ [m] will have n/m checked-in clients in expectation.
As a result, for an averaged update h̃i = g̃i

|Si| , we get E
[
‖h̃i‖2

]
≤ mpσ2

n + L2. With this, our technique will satisfy
both the conditions required to apply [32, Theorem 2] for learning rate ηi = c√

i
, giving:

ED,θm [L (D ; θm)]−L (D ; θ∗) ≤
(
R2

c
+ c

(
mpσ2

n
+ L2

))(
2 + log(m)√

m

)
Optimizing the learning rate to be ηi = R

√
n√

(mpσ2+nL2)i
gives the statement of the theorem.

When in addition the loss is β-smooth we can obtain an improved bound on the expected risk – in this case, for
the average parameter vector 1

m

∑
i θi – by applying [11, Theorem 6.3]. Let hi = ∇θL (D ; θi) be the true gradient

on the population loss at each iteration. The cited result says that after m iterations with learning rate ηi = 1

β+ κ
√
t√

2R

with κ2 ≥ E[‖hi − h̃i‖2] we get

ED,θ1,...,θm

[
L

(
D ;

1

m

m∑
i=1

θi

)]
−L (D ; θ∗) ≤ Rκ

√
2

m
+
βR2

m

The result now follows from observing that

E[‖hi − h̃i‖2] ≤ ES∼Bin(n,1/m)

[
1

S
(L2 + pσ2)

∣∣∣∣S > 0

]
= O

(m
n

(L2 + pσ2)
)

Proof of Proposition 4.4. In Algorithm Asldw, for i ∈ [n−m+ 1], we have

Si = {j : User(j) checks-in for index i}

For i ∈ [n], define an indicator random variable Ei that indicates if Si is empty. Note that the server performs a
dummy gradient update for instance i ∈ [n] if and only if Si is empty (or, in other words, Ei = 1). Next, for j ∈ [m],
let Ij denote the index that user j in AlgorithmAfix performs her Rj-check-in into, where Rj = {j, . . . , j+m− 1}.
Thus, for index i ∈ {m, . . . , n−m+ 1}, we have

Pr [Ei = 1] = Pr

 ⋂
j∈[i−m+1,i]

Ij 6= i

 =
∏

j∈[i−m+1,i]

Pr [Ij 6= i] =

(
1− 1

m

)m
≤ 1

e
(9)

where the second equality follows since the check-ins for each user are independent of the others, and the inequality
follows as

(
1− a

b

)b ≤ e−a for b > 1, |a| ≤ b.
Thus, for the expected number of dummy gradient updates, we have:

E(E1:n) =
∑

i∈{m,...,n−m+1}

Pr [Ei = 1] ≤ n−m+ 1

e

where the inequality follows from inequality 9.

17

A.1 Proof of Theorems 3.2 and 4.3
We will first prove the privacy guarantee of Afix (Algorithm 1) by reducing it to algorithm Arep (Algorithm 3) that
starts by swapping the first element in the dataset by a given replacement element, randomly chooses a position in the
dataset to get replaced by the original first element with a given probability, and then carries out DP-SGD with the
local randomizer. W.l.o.g., for simplicity we will defineArep to update the model for 1-sized minibatches (i.e., update
at every time step). It is easy to extend to b-sized minibatch updates by accumulating the gradient updates for every b
steps and then updating the model.

For the proofs that follow, it will be convenient to define additional notation for denoting distance between dis-
tributions. Given 2 distributions µ and µ′, we denote them as µ u(ε,δ) µ

′ if they are (ε, δ)-DP close, i.e., if for all
measurable outcomes S, we have

e−ε (µ′(S)− δ) ≤ µ(S) ≤ eεµ′(S) + δ

Algorithm 3 Arep: DP-SGD with One Random Replacement

Input: Dataset D = d1:m, local randomizer Aldp.
Parameters: Initial model θ1 ∈ Rp, weights w1:m where wi ∈ [0, wmax] for i ∈ [m], replacement element dr

1: Sample I u.a.r.←−−− [m]
2: Let G← (dr, d2:m)

3: Let σI(D)← (G1:I−1, zI , GI+1:m), where zI =

{
d1 with probability wI
G[I] otherwise

4: for i ∈ [m] do
5: g̃i ← Aldp(θi;σI(D)[i])
6: θi+1 ← θi − ηg̃i
7: Output θi+1

Theorem A.4 (Amplification via random replacement). Suppose Aldp is an ε0-DP local randomizer. Let Arep :
Dm → Θm be the protocol from Algorithm 3. For any δ ∈ (0, 1), algorithm Arep is (ε, δ)-DP at index 1 in the

central model, where ε =
w2
maxe

ε0 (eε0−1)2

2m +wmax(eε0 − 1)
√

2eε0 log (1/δ)
m . In particular, for ε0 ≤ 1 and δ ≤ 1/100,

we get ε ≤ 7wmaxε0

√
log(1/δ)

m . Here, initial model θ1 ∈ Rp, weights wmax ∈ [0, 1], wi ∈ [0, wmax] for every
i ∈ [m], and replacement element dr ∈ [0, 1] are parameters to Arep. Furthermore, if Aldp is an (ε0, δ0)-DP local

randomizer with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then algorithm Arep is (ε′, δ′)-DP at index 1 in the central model,

where ε′ =
w2
maxe

8ε0 (e8ε0−1)2

2m + wmax(e8ε0 − 1)
√

2e8ε0 log (1/δ)
m and δ′ = δ +m(eε

′
+ 1)δ1.

Proof. We start by proving the privacy guarantee of Arep for the case where the local randomizer Aldp is ε0-DP, i.e.,
for the case where δ0 = 0. Let us denote the output sequence of Arep by Z2, Z3, . . . , Zm+1. Note that Z2:m+1 can
be seen as the output of a sequence of m algorithms with conditionally independent randomness: B(i) for i ∈ [m] as
follows. On input θ2:i and D, B(i) outputs a random sample from the distribution of Zi+1|Z2:i = θ2:i. The outputs
of B(1), . . . ,B(i−1) are given as input to B(i). Therefore, in order to upper bound the privacy parameters of Arep, we
analyze the privacy parameters of B(1), . . . ,B(m) and apply the heterogeneous advanced composition for DP [24].

Next, observe that conditioned on the value of I , Zi+1 is the output of A(i)
ldp(θi; d) with its internal randomness

independent of Z2:i. In particular, for i ≥ 2, one can implement B(i) as follows. First, sample an index T from the
distribution of I|Z2:i = θ2:i. Assign g̃i = Aldp(θi; d1) w.p. wi if T = i, otherwise let g̃i = Aldp(θi; di). For B(1), we
first sample T u.a.r. from [m], and let g̃1 = Aldp(θ1; d1) w.p. w1 if T = 1, otherwise let g̃1 = Aldp(θ1; dr). For each
i ∈ [m], algorithm B(i) outputs θi+1 = θi − ηg̃i.

We now prove that for each i ∈ [m], B(i) is
(

log
(

1 + wmaxe
ε0 (eε0−1)

i−1+eε0 (m−i+1)

)
, 0
)

-DP at index 1. Let D = d1:m and

D′ = (d′1, d2:m) be 2 datasets differing in the first element. Let θ2:i denote the input to B(i). Let µ be the probability

18

distribution of B(i)(θ2:i;D). Let µ1 be the distribution of B(i)(θ2:i;D) conditioned on g̃i = Aldp(θ2:i; d1), and µ0 be
the distribution of B(i)(θ2:i;D) conditioned on g̃i = Aldp(θ2:i; dr) for i = 1, and g̃i = Aldp(θ2:i; di) for i ≥ 2. Also,
denote by µ′, µ′0, and µ′1 the corresponding quantities when B(i) is run on D′. Let qi be the probability that T = i
(sampled from I|Z2:i = θ2:i). By definition, µ = (1 − qiwi)µ0 + qiwiµ1, as B(i)(s1:i−1;D) generates output using
Aldp(θ2:i; d1) w.p. wi if T = i. Similarly, µ′ = (1− q′iwi)µ′0 + q′iwiµ

′
1 when the input dataset is D′.

For i ∈ [m], we observe that µ0 = µ′0, since in both cases the output is generated by Aldp(θ1, dr) for i = 1, and
Aldp(θ2:i; di) for i ≥ 2. W.l.o.g. assume that qi ≥ q′i. Thus, we can shift (qi − q′i)wi mass from the first component
of the mixture in µ′ to the second component to obtain

µ′ = (1− qiwi)µ0 + qiwi

(
q′i
qi
µ′1 +

(
1− q′i

qi

)
µ0

)
= (1− qiwi)µ0 + qiwiµ

′′
1

This shows that µ and µ′ are overlapping mixtures [5]. Now, ε0-LDP ofAldp implies µ0 u(ε0,0) µ1 and µ′0 u(ε0,0) µ
′
1.

Moreover, ε0-LDP of Aldp also implies µ1 u(ε0,0) µ
′
1, so by the joint convexity of the relation u(ε0,0) we also have

µ1 u(ε0,0) µ
′′
1 . Thus, we can apply Advanced Joint Convexity of overlapping mixtures (Theorem 2 in [5]) to get that

µ u(log(1+qiwi(eε0−1)),0) µ
′ (10)

We now claim that qi ≤ eε0

i−1+eε0 (m−i+1) . Observe that for each D∗ ∈ {D,D′}, conditioning on T = i reduces
Arep to running Aldp on σi(D∗). Note that for j < i, we have that σi(D∗)[1 : i − 1] differs from σj(D

∗)[1 : i − 1]
in at most 1 position, and for j > i, we have σi(D∗)[1 : i − 1] = σj(D

∗)[1 : i − 1]. Since Pr[j ≥ i] = m−i+1
m , by

setting q = m−i+1
m in Lemma A.1, we get that

Pr[Z2:i = θ2:i|T = i]

Pr[Z2:i = θ2:i]
≤ eε0

1 + (m−i+1)
m (eε0 − 1)

=
meε0

i− 1 + eε0(m− i+ 1)
(11)

This immediately implies our claim, since we have

qi = Pr[T = i|Z2:i = θ2:i] =
Pr[Z2:i = θ2:i|T = i] ·Pr[t = i]

Pr[Z2:i = θ2:i]

≤ eε0

i− 1 + eε0(m− i+ 1)

where the inequality follows from inequality 11, and as Pr[T = i] = 1
m .

Substituting the value of qi in equation 10, and using the fact that wi ≤ wmax, we get that for each i ∈ [m],
algorithm B(i) is (εi, 0)-DP at index 1, where εi = log

(
1 + wmaxe

ε0 (eε0−1)
i−1+eε0 (m−i+1)

)
. This can alternatively be written as

εi = log

(
1 + wmax(eε0−1)

m−(i−1) e
ε0−1
eε0

)
, and using Lemma A.2 for the sequence of mechanisms B(1), . . . ,B(m) by setting

a = wmax(eε0 − 1), b = eε0−1
eε0 , and k = m, we get that algorithm Arep satisfies (ε, δ)-DP at index 1, for ε =

w2
maxe

ε0 (eε0−1)2

2m + wmax(eε0 − 1)
√

2eε0 log (1/δ)
m .

Now, for the above bound, if ε0 ≤ 1 and δ ≤ 1/4, we get that

ε =
w2
maxe

ε0(eε0 − 1)2

2m
+ wmax(eε0 − 1)

√
2eε0 log (1/δ)

m

=
wmaxe

0.5ε0(eε0 − 1)√
m

(
wmaxe

0.5ε0(eε0 − 1)

2
√
m

+
√

2 log (1/δ)

)
≤ 3wmaxε0√

m

(
3wmaxε0

2
√
m

+
√

2 log (1/δ)

)
≤ 3wmaxε0√

m

((√
2 +

√
1/2
)√

log (1/δ)
)
≤ 7wmaxε0

√
log (1/δ)

m

19

where the first inequality follows since e0.5ε0(eε0 − 1) ≤ 3ε0 for ε0 ≤ 1, and the second inequality follows since
3wmaxε0

2
√
m
≤
√

log 1
δ

2 for δ ≤ 1/100.
Now, we prove the privacy guarantee of Arep for the more general case where for each i ∈ [m], the local random-

izer Aldp is (ε0, δ0)-DP. To upper bound the privacy parameters of Arep, we modify the local randomizer to satisfy
pure DP, apply the previous analysis, and then account for the difference between the protocols with original and
modified randomizers using the total variation distance.

Since Aldp is (ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , we get from Lemma A.3 that there exists a random-

izer Ãldp that is 8ε0-DP, and for any data record d and parameter vector θ satisfies TV
(
Aldp(d; θ), Ãldp(d; θ)

)
≤ δ1.

After replacing every instance of Aldp in Arep with Ãldp to obtain Ãrep, a union bound gives:

TV
(
Arep(D); Ãrep(D)

)
≤ mδ1 (12)

Now, proceeding in a similar manner as in the case of ε0-DP local randomizers above to see that Ãrep using

the 8ε0-DP local randomizers Ãldp satisfies (ε′, δ)-DP at index 1 with ε′ =
w2
maxe

8ε0 (e8ε0−1)2

2m + wmax(e8ε0 −

1)
√

2e8ε0 log (1/δ)
m . Thus, using Proposition 3 from [38] and inequality 12, we get that Arep satisfies (ε′, δ′)-DP at

index 1 with δ′ = δ +m(eε
′
+ 1)δ1.

Now, we are ready to prove Theorems 3.2 and 4.3.

Proof of Theorem 3.2. Let D and D′ be 2 datasets of n users that differ in a user at some index i∗ ∈ [n]. Algorithm
Afix can be alternatively seen as follows. The server starts by initializing F = [0p]m, weights W = [1]m, and for
i ∈ [m], set Si = φ. For each user j ∈ [n] s.t. j 6= i∗, user j performs a random check-in along with some additional
operations. She first samples Ij u.a.r. from [m], and w.p. p0 does the following: she requests the server for model
at index Ij (and gets inserted into set SIj at the server). She also updates F [Ij] = dj with probability W [Ij], and
sets W [Ij] =

W [Ij]
W [Ij]+1 . Next, the server runs Arep on input dataset π∗(D) = (di∗ , F [2 : m]), with the replacement

element F [1], initial model θ1, and weight parameters set to W ′[1 : m], where W ′[i] = W [i] · p0.
First, notice that in the alternative strategy above, for each of the weights W [i], i ∈ [m], it always holds that

W [i] = 1
|Si| . Thus, each weight W [i], i ∈ [m] is updated to simulate reservoir sampling [36] of size 1 in slot F [i]. In

other words, updating F [i] = d with probability W [i] for an element d is equivalent to F [j]
u.a.r.←−−− Si, where Si is the

set containing d and all the elements previously considered for updating Si. As a result, since the first element inArep
performs a random replacement with weights set to W ′[1 : m] for its input dataset, it is easy to see that performing a
concurrent random check-in for user i∗ (as in Algorithm 1) is equivalent to performing a random replacement for her
after the check-ins of all the other users.

From our construction, we know that datasets π∗(D) and π∗(D′), which are each of length m, differ only in
the element with index 1. Moreover, in the alternative strategy above, note that the weights W ′[1 : m] and the
replacement element F [1] input to Arep are independent of the data of user i∗ in the original dataset. Therefore, in
the case δ0 = 0, using Theorem A.4 and setting wmax = p0, we get Arep(π∗(D)) uε,δ Arep(π∗(D′)) at index 1,

for ε = p2eε0 (eε0−1)2

2m +
p(eε0−1)

√
2eε0 log (1/δ)

m , which implies Adist(D) uε,δ Adist(D′). Consequently, it implies

ε ≤ 7p0ε0

√
log(1/δ)

m for ε0 ≤ 1 and δ ≤ 1/100.
The case δ0 > 0 follows from the same reduction using the corresponding setting of Theorem A.4.

Proof of Theorem 4.3. We proceed similar to the proof of Theorem 3.2. Let D and D′ be 2 datasets of n users that
differ in a user at some index i∗ ∈ [n]. Algorithm Asldw can be alternatively seen as follows. The server starts by
initializing F = [0p]n−m+1, weights W = [1]n−m+1, and for j ∈ {m, . . . , n}, set Sj = φ. For each user j ∈ [n]
s.t. j 6= i∗, user j performs a random check-in along with some additional operations. She first samples Ij u.a.r. from
{j, . . . , j + m − 1}, requests the server for model at index Ij (and gets inserted into set SIj at the server). She also
updates F [Ij] = dj with probability W [Ij], and sets W [Ij] =

W [Ij]
W [Ij]+1 .

20

Now, the server runs its loop until it releases i∗ − 1 outputs. Next, the server runs Arep on input dataset π∗(D) =
(di∗ , F [i∗ + 1 : i∗ + m]), with weight parameters set to W [i∗ : i∗ + m], initializing model θi∗ , and the replacement
element F [i∗]. Lastly, the server releases the last (n − (i∗ + m) + 1) outputs of Asldw using F [i∗ + m + 1 : n] and
the local randomizer Aldp.

First, notice that in the alternative strategy above, for each of the weights W [i], i ∈ [n], it always holds that
W [i] = 1

|Si| . Thus, each weight W [i], i ∈ [n] is updated to simulate reservoir sampling [36] of size 1 in slot F [i]. In

other words, updating F [i] = d with probability W [i] for an element d is equivalent to F [i]
u.a.r.←−−− Si, where Si is the

set containing z and all the elements previously considered for updating Si. As a result, since the first element inArep
performs a random replacement for its input dataset (which doesn’t include F1:i∗−1

⋃
Fi∗+m+1:n in the alternative

strategy above), it is easy to see that sequentially performing a random check-in for user i∗ (as in Algorithm 1) is
equivalent to performing a random replacement for her after the check-ins of all the other users and releasing the first
i∗ − 1 outputs of Asldw.

From our construction, we know that datasets π∗(D) and π∗(D′), which are each of length m, differ only in the
element with index 1. Moreover, in the alternative strategy above, note that the weights W [i∗ : i∗ + m], initializing
model θi∗ and the replacement element F [i∗] input to Arep are independent of the data of user i∗ in the original
dataset. Therefore, using Theorem A.4 and setting wmax = 1, we getArep(π∗(D)) uε,δ+mδ0 Arep(π∗(D′)) at index

1, for ε = eε0 (eε0−1)2

2m +(eε0−1)
√

2eε0 log (1/δ)
m , which impliesArc(D) uε,δ+mδ0 Arc(D′). Consequently, it implies

ε ≤ 7ε0

√
log(1/δ)

m for ε0 ≤ 1 and δ ≤ 1/100.
The case δ0 > 0 follows from the same reduction using the corresponding setting of Theorem A.4.

A.2 Proof of Theorem 4.1
Let L = (L1, . . . , Lm) represent the number of users contributing to each of the update steps, i.e., Li = |Si| for
i ∈ [m]. We start by considering the output distribution of Aavg(D) conditioned on L = ` for some ` ∈ [n]m s.t.∑
i `i = n. This distribution is the same as the one produced by Algorithm 4 with bin sizes ` on a random permutation

π(D) of the original dataset D. To analyze the privacy of Abin(π(D), `) we use the reduction from shuffling to
swapping [19] . This reduction says it suffices to analyze the privacy of D 7→ Abin(σ(D), `) on a pair of datasets D
and D′ differing in the first record, where σ(D) randomly swaps d1 with dI for I uniformly sampled from [n].

Algorithm 4 Abin: DP-SGD with Bins

Input: Dataset D = d1:n, bin sizes ` ∈ [n]m with
∑
i `i = n, local randomizer Aldp

1: Initialize model θ1 ∈ Rp
2: j ← 1
3: for i ∈ [m] do
4: if `i = 0 then
5: θi+1 ← θi
6: else
7: g̃i ← 0
8: for k ∈ {j, . . . , j + `i − 1} do
9: g̃i ← g̃i +Aldp(dk, θi)

10: j ← j + `i
11: θi+1 ← ModelUpdate(θi; g̃i/`i)
12: return sequence θ2:m+1

Theorem A.5. Suppose Aldp : D × Θ → Θ is an ε0-DP local randomizer. Let ` ∈ [m]n with
∑
i `i = n.

Also, for any dataset D = {d1, . . . , dn}, define σ(D) be the operation that randomly swaps d1 with dI for I
uniformly sampled from [n]. For any δ ∈ (0, 1), the mechanism M(D) = Abin(σ(D), `) is (ε, δ)-DP at in-

dex 1 with ε =
‖`‖22e

4ε0 (eε0−1)2

2n2 +
‖`‖2e

2ε0 (eε0−1)

n

√
2 log(1/δ). Furthermore, if Aldp is (ε0, δ0)-DP with δ0 ≤

21

(1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) , then M is (ε′, δ′)-DP with ε′ =
‖`‖22e

32ε0 (e8ε0−1)2

2n2 +
‖`‖2e

16ε0 (e8ε0−1)

n

√
2 log(1/δ) and

δ′ = δ +m(eε
′
+ 1)δ1.

Proof. Let σ(D) = (d̃1, . . . , d̃n) denote the dataset after the swap operation. Using the bin sizes `, we split this dataset
into m0 disjoint datasets D̃1, . . . , D̃m0

of sizes |D̃i| = `i with D̃1 = (d̃1, . . . , d̃`1), and so on. Note that each of the
outputs is obtained as θi+1 ← A(i)(θi; D̃i) with

A(i)(θi; D̃i) = ModelUpdate

θi; 1

`i

∑
d̃∈D̃i

Aldp(d̃, θi)


By post-processing, each of the A(i) is (ε0, δ0)-DP.

The next step is to modify these mechanisms to reduce the analysis to a question about adaptive composition. Thus,
we introduce mechanisms B(i) for i ∈ [m0] that take as input the whole dataset D and the outputs θ1:i = (θ1, . . . , θi)
of the previous mechanisms. Mechanism B(i) starts by splitting the dataset D into m0 disjoint datasets D1, . . . , Dm0

of sizes |Di| = `i as above. Then, it returns A(i)(θi; D̄i) for a dataset D̄i of size `i constructed as follows: with
probability pi = Pr[d1 ∈ D̃i|θ1:i] it takes D̄i to be the dataset obtained by replacing a random element from Di with
d1, and with probability 1− pi it takes D̄i = Di. Note this construction preserves the output distribution since for any
θ we have

Pr[A(i)(θi; D̃i) = θ|θ1:i] = (1− pi)Pr[A(i)(θi;Di) = θ|θ1:i, d1 /∈ D̃i]

+
pi
`i

∑
d∈Di

Pr[A(i)(θi;Di ∪ {d1} \ {d}) = θ|θ1:i, d1 ∈ D̃i]

= Pr[B(i)(θ1:i;D) = θ]

To bound the probabilities pi we write:

pi = Pr[d1 ∈ D̃i|θ1:i]

=
Pr[θ1:i|d1 ∈ D̃i]Pr[d1 ∈ D̃i]

Pr[θ1:i]

=
`i
n

Pr[θ1:i|d1 ∈ D̃i]∑
k∈[m0] Pr[θ1:i|d1 ∈ D̃k]Pr[d1 ∈ D̃k]

=
`i∑

k∈[m0] `k
Pr[θ1:i|d1∈D̃k]

Pr[θ1:i|d1∈D̃i]

To proceed, we assume δ0 = 0. If that is not the case, then the same argument based on Lemma A.3 used in the proof
of Theorem A.4 allows us to reduce the analysis to the case δ0 = 0 and modify the final ε and δ accordingly. When
the local randomizers satisfy pure DP, we have∑

k∈[m0]

`k
Pr[θ1:i|d1 ∈ D̃k]

Pr[θ1:i|d1 ∈ D̃i]
≥ `i + e−2ε0

∑
k<i

`k + e−ε0
∑
k>i

`k

≥ e−2ε0n

Thus we obtain pi ≤ e2ε0`i/n. Now, the overlapping mixtures argument used in the proof of Theorem A.4 (see [5])
shows that B(i) is εi-DP with εi ≤ log(1 + e2ε0(eε0 − 1)`i/n). Furthermore, the heterogenous advanced composition
theorem [24] implies that the composition of B(1), . . . ,B(m0) satisfies (ε, δ)-DP with

ε =
∑
i∈[k]

(eεi − 1)εi
eεi + 1

+

√√√√2 log
1

δ

∑
i∈[k]

ε2
i

≤
(eε0 − 1)2e4ε0 ‖`‖22

2n2
+

√
2(eε0 − 1)2e4ε0 ‖`‖22

n2
log

1

δ

22

To conclude the proof of Theorem 4.1, we provide a high probability bound for ‖L‖2 for random L representing
the loads of m bins when n balls are thrown uniformly and independently.

Lemma A.6. Let L = (L1, . . . , Lm) denote the number of users checked in into each ofm update slots in the protocol
from Figure 2. With probability at least 1− δ, we have

‖L‖2 ≤
√
n+

n2

m
+
√
n log(1/δ).

Proof. The proof is a standard application of McDiarmid’s inequality. First note that ‖L‖2 is a function of n i.i.d.
random variables indicating the bin where each ball is allocated. Since changing the assignment of one ball can only
change ‖L‖2 by

√
2, we have

‖L‖2 ≤ E ‖L‖2 +
√
n log(1/δ)

with probability at least 1− δ. Finally, we use Jensen’s inequality to obtain

E [‖L‖2] ≤
√
E
[
‖L‖22

]
=

√∑
i∈[m]

E [L2
i] =

√
mE [Bin(n, 1/m)2]

=

√
m

(
n

m

(
1− 1

m

)
+
n2

m2

)
≤
√
n+

n2

m

The privacy claim in Theorem 4.1 follows from using Lemma A.6 to condition with probability at least 1 − δ2 to
the case where L is such that

‖L‖2
n
≤
√

1

n
+

1

m
+

√
log(1/δ2)

n
,

and for each individual event L = ` satisfying this condition, applying the analysis from Theorem A.5 after the
reduction from shuffling to averaging (see, e.g., the proof of Theorem 5.1 below).

A.3 Proof of Theorem 5.1

Algorithm 5 Asl: Local responses with shuffling

Input: Dataset D = d1:n, algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Let π be a uniformly random permutation of [n]
2: for i ∈ [n] do
3: si ← A(i)

ldp(s1:i−1; dπ(i))
4: return sequence s1:n

We will prove the privacy guarantee of Asl (Algorithm 5) in a similar manner as in the proof of Theorem 7 in
[19]: by reducing Asl to Aswap that starts by swapping the first element with a u.a.r. sample in the dataset, and then
applies the local randomizers (Algorithm 6). They key difference between our proof and the one in [19] is that we
provide tighter, position-dependent privacy guarantees for each of the outputs ofAswap, and then use an heterogeneous
adaptive composition theorem from [24] to compute the final privacy parameters.

23

Algorithm 6 Aswap: Local responses with one swap

Input: Dataset D = d1:n, algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Sample I u.a.r.←−−− [n]
2: Let σI(D)← (dI , d2, . . . , dI−1, d1, dI+1, . . . , dn)
3: for i ∈ [c] do
4: si ← A(i)

ldp(s1:i−1;σI(D)[i])
5: return sequence s1:n

Theorem A.7. (Amplification by swapping) For a domain D, let A(i)
ldp : S(1) × · · · × S(i−1) × D → S(i) for i ∈ [n]

(where S(i) is the range space ofA(i)
ldp) be a sequence of algorithms s.t. A(i)

ldp is ε0-DP for all values of auxiliary inputs
in S(1) × · · · × S(i−1). Let Aswap : Dn → S(1) × · · · × S(n) be the algorithm that given a dataset D = d1:n ∈ Dn,
swaps the first element in D with an element sampled u.a.r. in D, and then applies the local randomizers to the
resulting dataset sequentially (see Algorithm 6). Aswap satisfies (ε, δ)-DP at index 1 in the central model, for ε =
e3ε0 (eε0−1)2

2n +e3ε0/2(eε0−1)
√

2 log (1/δ)
n . Furthermore, if theA(i) are (ε0, δ0)-DP with δ0 ≤ (1−e−ε0)δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0))

) ,

then Aswap is (ε′, δ′)-DP with ε′ = e24ε0 (e8ε0−1)2

2n + e12ε0(e8ε0 − 1)
√

2 log (1/δ)
n and δ′ = δ +m(eε

′
+ 1)δ1.

Proof. We start by proving the privacy guarantee of Aswap for the case where for each i ∈ [c], the local randomizer
A(i)
ldp is ε0-DP, i.e., for the case where δ0 = 0. Let us denote the output sequence of Aswap by Z1, Z2, . . . , Zn.

Note that Z1:n can be seen as the output of a sequence of n algorithms with conditionally independent randomness:
B(i) : S(1) × · · · × S(i−1) × Dn → S(i) for i ∈ [n]. On input s1:i−1 and D, B(i) outputs a random sample from
the distribution of Zi|Z1:i−1 = s1:i−1. The outputs of B(1), . . . ,B(i−1) are given as input to B(i). Therefore, in order
to upper bound the privacy parameters of Aswap, we analyze the privacy parameters of B(1), . . . ,B(n) and apply the
heterogeneous advanced composition for DP [24].

Next, observe that conditioned on the value of I , Zi is the output of A(i)
ldp(s1:i−1; d) with its internal randomness

independent of Z1:i−1. In particular, for i ≥ 2, one can implement B(i) as follows. First, sample an index T from the
distribution of I|Z1:i−1 = s1:i−1. Output A(i)

ldp(s1:i−1; d1) if T = i, otherwise output A(i)
ldp(s1:i−1; di). For B(1), we

first sample T u.a.r. from [n], and then output A(1)
ldp(dT).

We now prove that for each i ∈ [c], B(i) is
(

log
(

1 + e2ε0 (eε0−1)
e2ε0+(i−1)+(n−i)eε0

)
, 0
)

-DP at index 1. Let D = d1:n

and D′ = (d′1, d2:n) be 2 datasets differing in the first element. Let s1:i−1 denote the input to B(i). Let µ be the
probability distribution of B(i)(s1:i−1;D), and let µ0 (resp. µ1) be the distribution of B(i)(s1:i−1;D) conditioned
on T 6= i (resp. T = i). Let qi be the probability that T = i (sampled from I|Z1:i−1 = s1:i−1). By definition,
µ = (1− qi)µ0 + qiµ1. Also, denote by µ′, µ′0, µ′1, and q′i the corresponding quantities when B(i) is run on D′. Thus,
we get µ′ = (1− q′i)µ′0 + q′iµ

′
1.

For i ∈ [n], we observe that µ0 = µ′0, since in both cases the output is generated by A(i)
ldp(dT) conditioned on

T 6= 1 for i = 1, and A(i)
ldp(s1:i−1; di) for i ≥ 2. W.l.o.g. assume that qi ≥ q′i. Thus, we can shift qi − q′i mass from

the first component of the mixture in µ′ to the second component to obtain

µ′ = (1− qi)µ0 + qi

(
q′i
qi
µ′1 +

(
1− q′i

qi

)
µ0

)
= (1− qi)µ0 + qiµ

′′
1

This shows that µ and µ′ are overlapping mixtures [5]. Now, ε0-LDP ofA(i)
ldp implies µ0 u(ε0,0) µ1 and µ0 u(ε0,0) µ

′
1.

Moreover, ε0-LDP of A(i)
ldp also implies µ1 u(ε0,0) µ

′
1, so by the joint convexity of the relation u(ε0,0) we also have

µ1 u(ε0,0) µ
′′
1 . Thus, we can apply Advanced Joint Convexity of overlapping mixtures (Theorem 2 in [5]) to get that

µ u(log(1+qi(eε0−1)),0) µ
′ (13)

24

We now claim that qi ≤ e2ε0

e2ε0+(i−1)+(n−i)eε0 . Observe that for each D∗ ∈ {D,D′}, conditioning on T = i

reduces Aswap to running A(k)
ldp, k ∈ [n] on σi(D∗). Note that σi(D∗)[1 : i − 1] differs from σj(D

∗)[1 : i − 1] in at

most 2 positions for j < i, and at most 1 position for j > i. By ε0-LDP of A(k)
ldp, k ∈ [n], we get that

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1|T = j]
≤ e2ε0 for j < i and

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1|T = j]
≤ eε0 for j > i (14)

Now, on the lines of the proof of Lemma A.1, we have:

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1]

=
Pr[Z1:i−1 = s1:i−1|t = i]

n∑
j=1

Pr[Z1:i−1 = s1:i−1|T = j]Pr[T = j]

=
1

n∑
j=1

Pr[Z1:i−1=s1:i−1|t=j]
Pr[Z1:i−1=s1:i−1|t=i] Pr[T = j]

=
n

1 + (i− 1)
∑
j<i

Pr[Z1:i−1=s1:i−1|T=j]
Pr[Z1:i−1=s1:i−1|T=i] + (n− i)

∑
k>i

Pr[Z1:i−1=s1:i−1|T=k]
Pr[Z1:i−1=s1:i−1|T=i]

≤ n

1 + (i− 1)e−2ε0 + (n− i)e−ε0
=

ne2ε0

e2ε0 + (i− 1) + (n− i)eε0

where the third equality follows as for every j ∈ [n],Pr[T = j] = 1
n , and the first inequality follows from inequal-

ity 14.
This immediately implies our claim, since

qi = Pr[T = i|Z1:i−1 = s1:i−1] =
Pr[Z1:i−1 = s1:i−1|T = i] ·Pr[T = i]

Pr[Z1:i−1 = s1:i−1]

≤ e2ε0

e2ε0 + (i− 1) + (n− i)eε0

where the inequality follows from (11), and as Pr[T = i] = 1
n . Substituting the value of qi in (13), we get that

for each i ∈ [n], algorithm B(i) is (εi, 0)-DP at index 1, where εi = log
(

1 + e2ε0 (eε0−1)
e2ε0+(i−1)+(n−i)eε0

)
. This results in

εi ≤ log

(
1 + eε0 (eε0−1)

n−(i−1)(1− 1
eε0)

)
, and using Lemma A.2 for the sequence of mechanisms B(1), . . . ,B(n) by setting

a = eε0(eε0 − 1), b = 1 − 1
eε0 , and k = n, we get that algorithm Aswap satisfies (ε, δ)-DP at index 1, for ε =

e3ε0 (eε0−1)2

2n + e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n .

The case δ0 > 0 uses the same argument based on Lemma A.3 used in the proof of Theorem A.4. This arguments
allows us to reduce the analysis to the case δ0 = 0 and modify the final ε and δ accordingly.

Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. This proof proceeds in a similar manner as the proof of Theorem 7 in [19]. Let D and D′ be
2 datasets of length n that differ at some index i∗ ∈ [n]. Algorithm Asl can be alternatively seen as follows. Pick a
random one-to-one mapping π∗ from {2, . . . , n} → [n] \ {i∗} and let π∗(D) = (di∗ , dπ∗(2), . . . , dπ∗(n)). Next, apply
Aswap to π∗(D). It is easy to see that for a u.a.r. chosen π∗ and u.a.r. I ∈ [n], the distribution of σI(π∗(D)) is a
uniformly random permutation of elements in D.

25

For a fixed π∗, we know that π∗(D) and π∗(D′) differ only in the element with index 1. Therefore, in the
case δ0 = 0, from Theorem A.7, we get Aswap(π∗(D)) uε,δ Aswap(π∗(D′)) at index 1, for ε = e3ε0 (eε0−1)2

2n +

e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n , which implies Asl(D) uε,δ Asl(D′).

The case δ0 > 0 follows similarly from the corresponding setting of Theorem A.7.

26

	Introduction
	Background and Problem Formulation
	Distributed Learning with Random Check-Ins
	Random Check-Ins with a Fixed Window
	Privacy Analysis
	Utility Analysis

	Variations: Thrifty Updates, and Sliding Windows
	Leveraging Updates from Multiple Users
	Random Check-Ins with a Sliding Window

	Improvements to Amplification via Shuffling
	Conclusion
	Omitted Results and Proofs
	Proof of Theorems 3.2 and 4.3
	Proof of Theorem 4.1
	Proof of Theorem 5.1

