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Abstract

Differentially private gradient descent (DP-GD) has been extremely effective both theoretically, and in practice,

for solving private empirical risk minimization (ERM) problems. In this paper, we focus on understanding the impact

of the clipping norm, a critical component of DP-GD, on its convergence. We provide the first formal convergence

analysis of clipped DP-GD.

More generally, we show that the value which one sets for clipping really matters: done wrong, it can dramatically

affect the resulting quality; done properly, it can eliminate the dependence of convergence on the model dimension-

ality. We do this by showing a dichotomous behavior of the clipping norm. First, we show that if the clipping norm

is set smaller than the optimal, even by a constant factor, the excess empirical risk for convex ERMs can increase

from O(1/n) to Ω(1), where n is the number of data samples. Next, we show that, regardless of the value of the

clipping norm, clipped DP-GD minimizes a well-defined convex objective over an unconstrained space, as long as

the underlying ERM is a generalized linear problem. Furthermore, if the clipping norm is set within at most a con-

stant factor higher than the optimal, then one can obtain an excess empirical risk guarantee that is independent of the

dimensionality of the model space.

Finally, we extend our result to non-convex generalized linear problems by showing that DP-GD reaches a first-

order stationary point as long as the loss is smooth, and the convergence is independent of the dimensionality of the

model space.

1 Introduction

Over the past few years, there has been tremendous progress in differentially private convex empirical risk minimiza-

tion (ERM) [9, 7, 38, 1, 6, 29, 44, 21, 33, 40, 15]. We know an almost-complete characterization of this problem

in terms of upper and lower bounds [7, 6], both for excess empirical risk and excess population risk. Differentially

private gradient descent (DP-GD) [39] (or its close variant, differentially private stochastic gradient descent (DP-SGD)

[7, 38, 1]) provides the tightest upper bounds.

One important assumption in both the convergence and the privacy guarantees for DP-(S)GD is that the loss

functions for the ERM problem are ℓ2-Lipschitz with an explicitly known Lipschitz constant. When the Lipschitz

constant is unknown or nonexistent, to guarantee privacy, the gradients of the individual loss functions are “clipped”

to a bounded ℓ2-norm, typically referred to as the clipping norm [1, 29, 33, 40]. We denote this variant by the clipped

DP-(S)GD. While there has been empirical progress on adaptively adjusting the clipping norm to maximize the signal-

to-noise ratio [33, 40], the fundamental impact of clipping norm on DP-(S)GD has not yet been studied. In this

paper, we provide the first convergence analysis of clipped DP-GD1 for convex generalized linear problems (defined

in Section 2). We show that the clipping norm has a significant impact. If set wrong, it can dramatically affect utility;

1While the results in this paper extend to DP-SGD, for brevity, we will only focus on DP-GD.
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if set properly, it can eliminate the dependence of convergence on the model dimensionality. We show a dichotomous

behavior:

i) Lower bound: If the clipping norm is smaller (even by a constant factor) than the maximum ℓ2-norm of the gradi-

ent for any of the individual loss function, then the excess empirical risk can increase from O(1/n) to Ω(1), where

n is the number of data samples. Furthermore, in certain ERM formulations (e.g., multiclass softmax regression),

we show that the clipped gradients may not correspond to the gradient field of any “natural” convex/non-convex

function.

ii) Upper bound: We provide the first formal convergence guarantees for clipped DP-GD. For unconstrained convex

generalized linear problems, we show that clipped DP-GD minimizes a well-defined objective function (which still

has the generalized linear problem structure, but may not correspond to the original ERM objective). Furthermore,

we show that its convergence does not have any explicit dependence on the number of model parameters: If the

clipping norm is within a constant multiple of the maximum ℓ2-norm of the gradient for any of the individual loss

function, then one can obtain an excess empirical risk guarantee of Õ(
√
k/εn) for the original ERM objective,

where k is the rank of the feature matrix, and ε is the privacy parameter.

In the following, we formally introduce the problem, and state our contributions. We note that there is a line of

work on the practice and theory of gradient clipping [17, 31, 32, 45]. Despite the similarity in name, these algorithms

are different as they clip the averaged gradient in each step, while in clipped DP-(S)GD, we need the individual

gradient to be clipped to get a reasonable privacy-utility trade-off.

Problem setup: Given a data set D = {d1, . . . , dn} and an objective function L(θ;D) = 1
n

n∑
i=1

ℓ(θ; di) with ℓ

being some loss function, DP-GD (Algorithm 1) is an iterative procedure that optimizes L(θ;D) as follows. At every

time step t, 1) Compute gt = 1
|n|
∑
d∈D

clip (∇ℓ(θt; d)), (an approximation of) the gradient at the current model θt.

Here, clip(v) = v · min
{

L
‖v‖2

, 1
}

, and L is called the clipping norm, 2) Update model parameters as θt+1 ←
θt − η ·

(
gt +N (0, σ2

1p)
)
, where η is the learning rate, and N (0, σ2

1p) is the random noise to guarantee privacy,

with p denoting the number of model parameters. The variance σ2 controls the strength of the achieved DP guarantee.

Throughout the paper, our privacy guarantees are for (ε, δ)-DP (Definition 2.1) and our accuracy guarantees are for

excess empirical risk R(θ) = L(θ;D) −min
θ′

L(θ′;D).

1.1 Our Contributions

In this paper, we provide upper and lower bounds on the convergence of clipped DP-GD on generalized linear prob-

lems. The results below, in particular, demonstrate the importance of choosing the right clipping norm. While the

design of algorithms to choose the clipping norm optimally is beyond the scope of this paper, in Appendix D.1 we

provide a discussion of the prior work on effectively choosing the clipping norm.

1. Lower bound on the excess empirical risk: In Section 3.1, we first provide a lower bound for binary logistic

regression showing that the excess empirical risk can increase from Õ(1/n) to Ω̃(1) if the clipping norm is smaller

(even by a constant factor) than its optimal value. This lower bound holds for unconstrained optimization, i.e.,

where the model θ is allowed to be anywhere in R
p. In particular, the lower bound only depends on the norm of

the feature vectors, and does not depend on any bound on the model space. Consider the setting where the feature

vectors have ℓ2-norm bounded by 1. For any clipping norm L < 1/4, and for any n larger than a constant n0(L),
we can construct a dataset with size n where the excess empirical risk of binary logistic regression for any DP

algorithm is Ω
(
log 1

L

)
. The proof of this lower bound follows by carefully exploiting the structure of a locally

quadratic region in the logistic loss, and demonstrating that this region is destroyed if the clipping norm is not

chosen properly.

Additionally, to formalize our argument, we prove a structural lemma (Lemma 3.1) to precisely quantify the un-

derlying optimization problem that clipped DP-GD solves. We show that clipping roughly corresponds to the

Huberization operation [19] commonly used in robust statistics. More importantly, we show that clipping does not
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impact convexity for a common class of problems called generalized linear problems (which include binary logistic

regression and linear regression). For any clipping norm, there exists a well-defined convex problem which clipped

DP-GD optimizes. We use this lemma to upper bound the convergence of clipped DP-GD on convex generalized

linear problems as well.

2. Clipping introduces non-convexity on multiclass softmax regression: In Section 3.2, we show that for softmax

regression with more than two classes, there does not exist any “natural” function (convex or non-convex) that

clipped DP-GD optimizes. Specifically, let G(θ) denote the clipped gradient of cross-entropy loss for the softmax

regression. We show that there does not exist any function f which is differentiable everywhere except for a closed

set with zero Lebesgue measure such that ∇θf(θ) = G(θ) for all θ where f is differentiable. As a result, any of

the excess empirical risk guarantees for private convex ERMs [7, 5] or private non-convex optimization [42] cease

to hold.

3. Dimension-independent excess empirical risk bounds for convex generalized linear problems: We consider

generalized linear problems, a class of problems with loss function ℓ(〈θ, x〉; y), where x is the feature vec-

tor and y is the response variable. If ℓ is convex in the first parameter, we call it a convex generalized lin-

ear problem. In Section 4.1, using the structural lemma mentioned earlier (Lemma 3.1), for each ERM prob-

lem L(θ;D) = 1
n

n∑
i=1

ℓ(〈θ,xi〉; yi) and clipping norm L, we can find an objective function L(L)
clipped(θ;D) =

1
n

n∑
i=1

ℓ
(L)
clipped(〈θ,xi〉; yi) that the clipped DP-GD actually optimizes. The loss function ℓ

(L)
clipped is still convex in its

first parameter.

We show that if the optimization is over an unconstrained space, then for objective functionL(L)
clipped, one can achieve

an excess empirical risk of Õ(L
√
rank/(ε · n)), where rank ≤ n is the rank of the feature matrix. Furthermore, if

the original loss function ℓ is B-Lipschitz w.r.t. the ℓ2-norm, and the clipping norm L ≥ B, then the above excess

empirical risk corresponds to the original objective functionL. To the best of our knowledge, this is the first formal

convergence guarantee of clipped DP-GD for any objective function.

Existing lower bounds for constrained private convex learning [7] show that for excess empirical risk, a polynomial

dependence on the dimensionality of the model space is necessary. In contrast, our bound only depends on rank.

Our main insight is that, for DP-GD on generalized linear problems, the gradients lie in a low-rank subspace, and

the noisy gradients that DP-GD operates on do not significantly impact this low-rank structure due to the spherical

nature of the noise. Our results seamlessly extend to the local differentially private (LDP) variant of DP-GD (shown

in Appendix D), albeit with an increase by a
√
n factor in the excess empirical risk, which is necessary [10].

While [22] proved a similar dimension-independent risk guarantee for two other differentially private algorithms,

namely output perturbation [9] and objective perturbation [9, 25], our result is notable in the following aspects.

First, we provide a more fine-grained control over the rank parameter. The result in [22] only provides guarantees

where rank is upper-bounded by n. Second, [22] crucially relies on the existence of a centralized data source,

whereas our result extends seamlessly to the LDP setting. Third, unlike the algorithms in [22], DP-GD does

not require convexity to ensure privacy. This is important because even if the overall optimization function is

non-convex, DP-GD still ensures differential privacy [7, 1]. Depending on the optimization profile, we may still

observe a dimension-independent convergence. We provide more evidence of this phenomenon below.

4. Dimension-independent convergence to a first-order stationary point: In Section 4.2, we extend our dimension-

independent result to non-convex generalized linear problems, i.e., where the loss function ℓ can be non-convex

but preserves the inner-product structure. Such problems appear commonly in robust regression [3, 28, 27]. We

show that for this class of problems, DP-GD converges to a first-order stationary point (i.e., where the gradient

of the objective function is zero). Again, this convergence guarantee is independent of the model dimensionality,

and only depends on rank of the feature matrix. Specifically, we show that if the loss function for the non-convex

generalized linear problem is smooth and B-Lipschitz in the ℓ2 norm, then DP-GD (with mild modification) with

clipping norm L ≥ B outputs a model θpriv such that the gradient of the objective function at θpriv has ℓ2-norm

Õ
(
L
√
rank/(εn)

)
.
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Algorithm 1 DP-GD: Differentially private gradient descent

Input: Data set D = {d1, · · · , dn}, loss function: ℓ : Rp × D → R, clipping norm: L, constraint set: C ⊆ R
p,

noise multiplier: λ, number of iterations: T , noise variance: σ2, learning rate: η.

1: θ0 ← 0.

2: for t = 0, . . . , T − 1 do

3: gt =
1
n

n∑
i=1

clip (∇ℓ(θt; di)), where clip(v) = v ·min
{
1, L

‖v‖2

}
.

4: θt+1 ← ΠC
(
θt − η

(
gt +N

(
0, σ2

)))
, where ΠC(v) = argmin

θ∈C
‖v − θ‖2.

5: end for

6: return θpriv = 1
T

T∑
t=1

θt.

While there has been work on understanding the convergence of variants of DP-(S)GD on non-convex losses [42],

this is the first result to demonstrate a dimension-independent convergence. At the heart of our result is a simple

folklore argument stated in [2] that shows first-order convergence of gradient descent for non-convex objectives.

We conjecture that our result can be extended to second-order convergence (analogous to [42]) under additional

assumptions on the loss function. A natural direction would be to modify the argument in [23] to be amenable to

DP-GD.

2 Preliminaries

Differential Privacy: Throughout the paper, we focus on approximate differential privacy [12, 11].

Definition 2.1 (Differential privacy [12, 11]). A randomized algorithm A is (ε, δ)-differentially private if, for any

pair of datasets D and D′ differing in exactly one data point (i.e., one data point is present in one set, and absent in

another), and for all events S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where the probability is taken over the random coins of A.

For meaningful privacy guarantees, ε is assumed to be a small constant, and δ ≪ 1/n for n = |D|.
Generalized Linear Problems: For a major part of this paper, we focus on a special class of ERM problems called

generalized linear problems [35], where the loss function ℓ(θ; d) takes a special inner-product form ℓ(〈θ,x〉; y). Here,

x ∈ R
p is usually denoted as a feature vector, and y ∈ R is the response. A data element d corresponds to a tuple

(x, y). Instead of the original feature vector in the data, x can also be extended to represent a mapped value φ(x) of

original feature vector. We do not make this distinction here.

A more comprehensive preliminaries is in Appendix A.

Differentially Private Gradient Descent: Now, we provide a formal version of Differentially Private Gradient De-

scent (DP-GD) (Algorithm 1). The version mentioned here is the one where the gradient gt is computed over the

complete data set, and the final model θpriv is an average of the models obtained so far. In practice, we may instead

use DP stochastic gradient descent (DP-SGD), where gt is computed over a random minibatch of the data, and the

final model θpriv is the last model. While our analytical results are for the former setting (due to brevity), they extend

to the latter with mild modifications to the proofs.

Theorem 2.2 (From [1, 30]). Differentially private gradient descent (Algorithm 1) is (ε, δ)-differentially private, if

one sets the noise variance as σ2 = 2L2T log(1/δ)
(nε)2 .

Theorem 2.3 (From [7] and [39]). If the constraint set C is convex, the loss function ℓ(θ; d) is convex in the first

parameter, ‖∇θℓ(θ; d)‖ ≤ B for all θ ∈ C and d ∈ D, and the clipping norm L ≥ B, then for objective function

4



L (θ;D) = 1
n

n∑
i=1

ℓ(θ; di), for appropriate choices of the learning rate and the number of iterations in differentially

private gradient descent (Algorithm 1), we have

E
[
L
(
θpriv ;D

)]
− L (θ∗;D) ≤ L‖θ0 − θ∗‖2

√
p log(1/δ)

εn
,

where θ∗ = argminθ∈C L(θ;D) is the optimizer of L and θ0 ∈ C is the initialization of θ in DP-GD. The correspond-

ing high-probability version is as follows: with probability at least 1− β,

L
(
θpriv ;D

)
− L (θ∗;D) ≤ L‖θ0 − θ∗‖2

√
p log(1/δ) log(1/β)

εn
.

3 Negative Effects of Gradient Clipping

In this section, we demonstrate a two-fold impact of clipping for convex generalized linear problems. In Section 3.1,

we show that clipping can increase the excess empirical risk from O(1/n) to Ω(1), even for fairly simple tasks like

binary logistic regression. Next, Section 3.2 shows that for more complex tasks like multiclass softmax regression,

clipping can completely destroy the underlying convexity property. We show that DP-GD with gradient clipping does

not even correspond to optimizing any objective function which is differentiable almost everywhere. This class, in

particular, includes any convex function.

3.1 Aggressive Clipping Increases Excess Empirical Risk

We highlight the importance of choosing an appropriate clipping strategy by computing the explicit error that clipping

introduces in the excess empirical risk. We first provide an analytical tool (Lemma 3.1) to precisely quantify the

objective function DP-GD optimizes when the underlying loss function is a generalized linear problem. This is a fairly

natural problem class including linear and logistic regression. Using Lemma 3.1, we then construct a lower bound for

logistic regression that quantifies the bias introduced by clipping.

Let ∂f(y) denote the subdifferential of f at y and ∂θℓ(θ
′;x′) denote the partial subdifferential of ℓ with respect to

θ at (θ,x) = (θ′,x′).

Lemma 3.1. Let f : R → R be any convex function and L ∈ R+ be any positive value. For any x 6= 0, let

Y1 =
{
y : u < − L

‖x‖2
∀u ∈ ∂f(y)

}
and Y2 =

{
y : u > L

‖x‖2
∀u ∈ ∂f(y)

}
. If Y1 is non-empty, let y1 = supY1;

otherwise, let y1 = −∞. If Y2 is non-empty, let y2 = inf Y2; otherwise, let y2 =∞. Let gx : R→ R be

gx(y) =





− L
‖x‖2

(y − y1) + f(y1) for y ∈ (−∞, y1)

f(y) for y ∈ [y1, y2] ∩R

L
‖x‖2

(y − y2) + f(y2) for y ∈ (y2,∞)

.

Then the following holds.

1. gx is convex.

2. Let ℓf : Rp ×R
p → R be ℓf (θ;x) = f (〈θ,x〉) for any θ,x. Let ℓg : Rp ×R

p → R be ℓg(θ;x) = gx(〈θ,x〉)
for any θ,x. Then, for any θ, x, we have

∂θℓg(θ;x) =

{
min

{
L

‖u‖2
, 1

}
· u : u ∈ ∂θℓf (θ;x)

}
.
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Note: Lemma 3.1 is a generic tool for understanding the effect of clipping. In fact, it can be used to justify the use of

standard private convex optimization analysis in [7, 16, 15, 5] to DP-GD on convex generalized linear problems. We

use it for both Theorem 3.2 and Theorem 4.1.

The proof is based on the fact that clipping does not affect the monotonicity property of the derivative of one-

dimensional convex function. It can be found at Appendix B.

Using Lemma 3.1, in Theorem 3.2, we show that running DP-GD with aggressive clipping can result in a constant

excess empirical risk for logistic regression, in contrast to the best achievable excess empirical risk of O (1/n). The

proof can be found in Appendix B.2.

For a dataset D = {(x1, y1), . . . , (xn, yn)} where xi ∈ R
p is the feature and yi ∈ {+1,−1} is the label,

and for a convex set C, logistic regression is defined as solving for θ∗ := argminθ∈C L(θ;D) where L(θ;D) =
1
n

∑n
i=1 ℓ(θ; (xi, yi)) with ℓ(θ; (x, y)) = log

(
1 + e−y〈θ,x〉).

Theorem 3.2. Consider the objective function L(θ,D) for logistic regression as defined above. Let θpriv be the

output of DP-GD on L(θ,D) with clipping norm L. For any L < 1/4, there exists a positive integer n0(L) such that

for any n ≥ n0(L), there exists a dataset D = {(xi, yi)}ni=1 with xi ∈ {x ∈ R
p : ‖x‖2 ≤ 1} and yi ∈ {+1,−1},

such that

E

[
L(θpriv ;D)

]
− min

θ∈Rp
L(θ;D) = Ω (log(1/L)) .

Note: The lower bound construction does not require constraining C. With C being the whole space R
p, the opti-

mization problem considered here is unconstrained. Also, notice that L < 1/4 is not a strong requirement, as for any

(xi, yi), the gradient of logistic loss is upper bounded by ‖xi‖2 ≤ 1. So, L = 1 is already equivalent to no clipping.

We can show a similar lower bound for linear regression where the objective function isL(θ;D) = 1
n

∑n
i=1 (yi − 〈θ, xi〉)2

and yi and xi are bounded. The proof follows the same strategy as in the lower bound for logistic regression. However,

to get an upper bound B on the gradient norm for Theorem 2.3, the construction needs C to have bounded radius. The

details are in Appendix B.3.

For both logistic regression and the linear regression, it is obvious that if we set the clipping norm L to be higher

than the upper bound of the gradient norm, which exists in both cases, then we can still get Õ(1/n) excess empirical

risk. Therefore, we can conclude that picking a proper L is critical in convex optimization problems.

3.2 Clipped Multiclass Softmax Regression Doesn’t Correspond to any “Natural” Function

We have shown that for any loss function ℓ that is convex in 〈θ,x〉, optimizing ℓwith DP-GD is equivalent to optimizing

another convex function, though they may have different minimizers. Does the same apply to other common loss

functions, such as the cross-entropy loss for softmax regression with more than two classes? The answer is it might

not. In this section, we will show that for softmax regression, there does not exist any function whose subgradient is

the clipped gradient of the cross-entropy loss as long as the function is required to be differentiable almost everywhere,

which includes any convex function.

Consider a K-class classification problem for K ≥ 3. Given a sample (x, y) with x ∈ R
p and y ∈ [K], the

cross-entropy loss ℓ : Rp×K ×R
p × [K]→ R is, for θ = [θ(1), . . . , θ(K)],

ℓ (θ; (x, y)) =

K∑

k=1

1 (y = k) log
exp

(
θ(k) · x

)
∑K

k′=1 exp
(
θ(k′) · x

) .

We then have the gradient of ℓ as

∇θ(k) (θ; (x, y)) =

(
exp

(
θ(k) · x

)
∑K

k′=1 exp
(
θ(k′) · x

) − 1 (y = k)

)
· x,

and the clipped gradient as G(θ) := min
(
1, L

‖∇θ(θ;(x,y))‖2

)
·∇θ (θ; (x, y)) for any θ ∈ R

p×K where∇θ (θ; (x, y)) =

[∇θ(1) (θ; (x, y)) , . . . ,∇θ(K) (θ; (x, y))].
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Theorem 3.3. Consider any sample (x, y) with x ∈ R
p\{0}, y ∈ [K] (for K ≥ 3) and any L > 0 such that

Θ = {θ : ‖∇θℓ(θ; (x, y))‖2 > L} is non-empty. Let G(θ) be the clipped gradient of ℓ(θ; (x, y)) as defined above.

Consider any function f : C → R, C ⊆ R
p×K such that Co ∩ Θ 6= ∅, where Co is the interior of set C. If f is

differentiable everywhere except for a set CN ⊆ C such that CN is a closed set on C and has zero Lebesgue measure,

then it is not possible for∇θf(θ) = G(θ) to hold for all θ ∈ Co\CN .

As convexity implies differentiable almost everywhere [34, Theorem 25.5], if f is convex, we only need to require

CN to be a closed set. Notice that the ℓ1 regularizer ‖θ‖1 is only non-differentiable on a closed set, and the hinge loss,

ℓhinge(θ; (x, y)) = max (0, 1− y〈θ, x〉), is also non-differentiable on a closed set. Theorem 3.3 essentially rules out

the possibility that the field of clipped gradients corresponds to any single objective function in convex models like

softmax regression and SVMs with ℓ1 or ℓ2 regularization, and in non-convex models like neural networks with either

smooth or non-smooth activation functions. The proof of Theorem 3.3 is in Appendix B.4.

One might ask if the problem could be resolved by “per-class” clipping, i.e., clipping∇θ(k)ℓ individually for each

k? The answer is negative. We provide more details in Appendix B.4.1.

4 Convergence of Clipped DP-GD on Generalized Linear Problems

In Section 4.1, we provide the first convergence guarantee for DP-GD with clipped gradients. We show that there

exist a well defined ERM problem which clipped DP-GD optimizes when operating on convex generalized linear

problems. Furthermore, if the clipping norm is L, the loss function ℓ(·; ·) is ℓ2-Lipschitz bounded by parameter

B ≤ L, then clipped DP-GD optimizes the original ERM problem. The convergence is independent of the number of

model parameters p.

In Section 4.2, we extend this guarantee to non-convex generalized linear problems with smooth losses, and show

that DP-GD approximately converges to a first-order-stationary point (FOSP) with similar dimension-independent

guarantee, as long as B ≤ L. This is the first dimension independent convergence guarantee for any non-convex

differentially private learning task.

4.1 Excess Empirical Risk Guarantees of Clipped DP-GD

Consider the following convex optimization problem. Let L(θ;D) = 1
n

n∑
i=1

ℓ(〈θ,xi〉; yi) be an objective function

defined over the data set D = {(x1, y1), . . . , (xn, yn)} with xi ∈ R
p and yi ∈ R for all i ∈ [n]. Assume the loss

function ℓ(〈θ,x〉; y) is convex in its first parameter and is B-Lipschitz (w.r.t. the ℓ2-norm) over all θ ∈ R
p and for all

x and y. The objective is to output θpriv that approximately solves argmin
θ∈Rp

L(θ;D) while satisfying DP. Now, we

show a utility/privacy trade-off for DP-GD with clipped gradients.

From Lemma 3.1 we know that for a given clipping normL, DP-GD optimizesL(L)
clipped(θ;D) = 1

n

n∑
i=1

ℓ
(L)
clipped(〈θ,xi〉; yi),

where ℓ
(L)
clipped(〈θ,xi〉; yi) can be obtained from Lemma 3.1. We show the following. The proof can be found in Ap-

pendix C.

Theorem 4.1. Let θ0 = 0
p be the initial point of DP-GD. Let θ∗ = argmin

θ∈Rp

L(L)
clipped(θ;D), and M be the projector to

the eigenspace of the matrix
n∑

i=1

xix
T
i . Setting the constraint set C = R

p, clipping norm L, and running DP-GD on

L(θ;D) for T = n2ε2 steps with appropriate learning rate η, we get:

E

[
L(L)
clipped

(
θpriv ;D

)]
− L(L)

clipped (θ
∗;D) ≤ L ‖θ∗‖M

√
1 + 2 · rank(M) · log(1/δ)

εn
.

In particular, if B is the Lipscthiz constant for the loss function ℓ(·; ·) and L ≥ B, then L(L)
clipped(θ;D) = L(θ;D), i.e.,

there is no effect of clipping.

Here, rank(M) ≤ n (but can be much smaller), and ‖·‖M is the seminorm w.r.t. the projector M .
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We present our result for excess empirical risk, but it can be translated to excess population risk guarantees via

standard stability-based arguments [7, 22]. The crux of our proof technique in Theorem 4.1 is to work in the subspace

generated by the feature vectors for generalized linear problem. We proved the guarantees only for DP-GD that returns

the average of the models generated during training. Our proof would extend seamlessly (by modifying the proofs of

Theorems 1 and 2 in [36]) to settings where the updates are over stochastic gradients computed over mini-batches of

the data.

The lower-bound in [7] shows that if one performs constrained optimization with differential privacy, then the

excess empirical risk is Ω̃(
√
p/(εn)). This lower bound holds true for generalized linear problems as well. However,

since we perform unconstrained optimization, the lower bound does not apply to our result. In fact, the lower bound

does not hold even for general convex functions, as long as the underlying optimization problem is unconstrained.

It is an open question whether an analogous result as in Theorem 4.1 is possible for general unconstrained convex

optimization. Furthermore, it will be interesting to see if the dependence of O(1/
√
n) in Theorem 4.1 can be reduced

to O(1/n), or it is tight. We leave this problem for future work.

The guarantee for the case L ≤ B is of the same flavor as in [22], wherein such a result was shown for two

different differentially private algorithms, namely, output perturbation, and objective perturbation [9, 25] for convex

optimization problems. Our result for DP-GD improves the state-of-the-art in the following ways. First, unlike output

perturbation and objective perturbation, DP-GD does not require convexity to ensure differential privacy. As a result,

DP-GD can be applied to non-convex losses and enjoys the same dimension-independence behavior as in the convex

case. Second, our results for DP-GD almost seamlessly transfer to the local differential privacy (LDP) setting (see

Definition D.1). This is the first dimension-independent excess risk guarantee in the LDP setting. Output perturbation

and objective perturbation are fundamentally incompatible with LDP, as they require a centralized dataset to operate.

This result is detailed in Appendix D.

4.2 Reaching Approximate Stationary Points for Non-convex Generalized Linear Problems

In this section, we provide an extension to Theorem 4.1 that captures the setting when the loss function ℓ(z; ·) may

be non-convex in z. Such loss functions appear commonly in robust regression, such as Savage loss [28], Tan-

gent loss [27], and tempered loss [3]. We show that as long as ℓ(z; ·) is β-smooth (see Definition A.3), DP-GD

approximately reaches a stationary point on the objective function L(θ;D), where θ is called a stationary point if

∇L(θ;D) = 0. As in all the above-stated results in this section, the convergence guarantee will have no explicit

dependence on the number of dimensions. We use a folklore argument stated in [2] to prove our result.

Theorem 4.2. Recall the notation in Theorem 4.1. Let tpriv ← argmin
0≤t≤T−1

‖∇L(θt;D)‖M + Lap
(
4L
n

)
. Then, the

algorithm that outputs θ0, . . . , θT in conjunction with tpriv is (2ε, δ)-differentially private. Furthermore, as long as

T ≥ βn2ε2·L(0p;D)

2L2 log( 1
δ )

and L ≥ B, we have with probability at least 1− γ,

∥∥∇L(θtpriv ;D)
∥∥
2
=
∥∥∇L(θtpriv ;D)

∥∥
M

= O

(
L

εn
·
√

rank(M) · log
(
1

δ

)
log

(
T

γ

))
.

Here, L is the Lipschitz constant, β is the smoothness constant of L(θ;D), and ‖·‖M is the seminorm w.r.t. the

projector M . We set a constant learning rate in Algorithm 1 as η = 1
β , and θ0 = 0

p. Notice that rank(M) ≤ n always

holds but rank(M) can be much smaller than n.

Theorem 4.2 does not immediately imply converging to a local minima, or a bound on the population risk. How-

ever, it demonstrates that convergence of DP-GD can be dimension-independent even in the case of non-convex losses.

It is perceivable that this line of argument be extended for convergence to a local minimum using techniques similar

to those in [23]. However, that would require an additional assumption beyond smoothness, i.e., Lipschitz continuity

of the Hessian. The proof of Theorem 4.2 is in Appendix C.
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A Background on Convex Learning

Empirical risk minimization (ERM): Let D = {d1, · · · , dn} ⊆ D be a data set of n-samples drawn from the domain

D, and let ℓ : C × D → R be a loss function with C ⊆ R
p. Then the empirical risk over the data set D is defined as

L(θ;D) = 1
n

n∑
i=1

ℓ(θ; di). The objective of an empirical risk minimization (ERM) algorithm is to output a model θ ∈ C
that approximately minimizes the empirical risk L over the set C. For the theoretical guarantees in this paper, we will

only look at ERM loss, and the excess empirical risk. By stability-based arguments [7, 35], one can easily translate

excess empirical risk for differentially private algorithms to their corresponding excess population risk, which can be

defined for a model θ ∈ C as Ed∼T [ℓ(θ; d)] where T is a given distribution over D.

Lipschitzness, Convexity, and Smoothness: We additionally require the following definitions to state our results.

These properties usually govern the rate of convergence of an algorithm for optimizing ERMs.

Definition A.1 (ℓ2-Lipschitz continuity). A function f : C → R is B-Lipschitz w.r.t. the ℓ2-norm over a set C ⊆ R
p

if the following holds: ∀θ1, θ2 ∈ C, |f(θ1)− f(θ2)| ≤ B · ‖θ1 − θ2‖2.

Definition A.2 ((Strong) convexity w.r.t. ℓ2-norm). A function f : C → R is ∆-strongly convex w.r.t. the ℓ2-norm
over a set C ⊆ R

p if ∀α ∈ (0, 1), (θ1, θ2) ∈ C × C:

f(αθ1 + (1− α)θ2) ≤ αf(θ1) + (1− α)f(θ2)−∆
α(α− 1)

2
‖θ1 − θ2‖

2
2 .

Function f is simply convex if the above holds for ∆ = 0.

Definition A.3 (Smoothness). A function f : C → R is β-smooth on C ⊆ R
p if for all θ1 ∈ C and for all θ2 ∈ C, we

have

f(θ2) ≤ f(θ1) + 〈∇f(θ1), θ2 − θ1〉+
β

2
‖θ1 − θ2‖

2
2.

Definition A.4 (Seminorm). Given a vector space V over a field F of the real numbers R, a seminorm on V is a

nonnegative-valued function ρ : V → R with the following properties. For all a ∈ F , and u,v ∈ V :

1. Triangle inequality: ρ(u+ v) ≤ ρ(u) + ρ(v).

2. Absolute scalability: ρ(a · u) = |a| · ρ(u).

B Omitted Proof from Section 3

B.1 Generic Tool for Understanding Clipping

We first define some notations.

• For any vector v and positive scalar I , let [v]I denote min
{

I
‖v‖2

, 1
}
· x, i.e., x projected onto the ℓ2-ball of

radius I . If v is a scalar, then [v]I = max{min{v, I},−I}. Also, for scalar, we use [v]I+ to denote min{v, I},
and [v]I− to denote max{v,−I}.

• For a set S of scalar or vector, let [S]I denote {[v]I : v ∈ S}. For a set S of scalar, let [S]I+ = {[v]I+ : v ∈ S}
and [S]I− = {[v]I− : v ∈ S}.

• For a set S of scalar, we write S > I if ∀u ∈ S, u > I; similar for <, ≥ and ≤.

Proof of Lemma 3.1. We consider any fixed x, and for simplicity we use g to denote gx. We first show g is convex

and ∂g(y) = [∂f(y)]L′ for y ∈ R using the following claims. And then apply that to ℓf and ℓg to prove the theorem.

Claim B.1. The following holds.
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1. If y1 ∈ R, then −L′ ∈ ∂f(y1), and thus ∂f(y) ≥ −L′ for all y > y1, ∂f(y) ≤ −L′ for all y < y1. If y2 ∈ R,

then L′ ∈ ∂f(y2), and thus ∂f(y) ≤ L′ for all y < y2, ∂f(y) ≥ L′ for all y > y2.

2. If y1 = −∞, then ∂f(y) ≥ −L′ for all y ∈ R. If y2 =∞, then ∂f(y) ≤ L′ for all y ∈ R.

3. If y1 = ∞, then ∂f(y) < −L′ for all y ∈ R, and thus y2 = ∞. If y2 = −∞, then ∂f(y) > L′ for all y ∈ R,

and thus y1 = −∞.

Proof. We consider the three cases separately.

1. By definition of y2 and monotonicity of subdifferential, for y > y2, we have ∂f(y) > L′, and for y < y2,

min ∂f(y) ≤ L′ (as subdifferential is closed).

We can find a sequence y(k) → y+0 , and a sequence g(k) with g(k) ∈ ∂f(y(k)). As subdifferential is monotone,

we know g(k) is decreasing. Since g(k) is lower bounded by I , the sequence g(k) converges to a value ≥ L′.
Similarly, we can find a sequence y(k

′) → y−2 , and a sequence g(k
′) with g(k

′) = min ∂f(y(k
′)). Since g(k

′) is

increasing and upper bounded by L′, the sequence g(k
′) converges to a value≤ L′.

Recall that subdifferential is continuous. So both limk→∞ g(k) ≥ L′ and limk′→∞ g(k
′) ≤ L′ are contained in

∂f(y0), and we have L′ ∈ ∂f(y2) by convexity of subdifferential. Then by monotonicity, for any y > y2, we

have ∂f(y) ≥ L′; for any y < y2, we have ∂f(y) ≤ L′. Similar argument can be applied to y1.

2. If Y1 is non-empty and y1 = ∞, by monotonicity of subdifferential, we have ∂f(y) < −L′ for all y ∈ R.

Therefore, Y2 = ∅ and we have y2 =∞. Similar holds for y2.

3. If Y1 is empty and y1 = −∞, then for any y, max ∂f(y) ≥ −L′ (as subdifferential is closed). By monotonicity

of subdifferential, ∂f(y) ≥ −L′ for all y ∈ R.

By monotonicity of subdifferential and the definition of y1 and y2, we know that y1 ≤ y2 always holds and thus g
is well-defined. Let C = [y1, y2] ∩R.

Claim B.2. We have that g is a convex function when y1 6=∞ and y2 6= −∞.

Proof. By Claim B.1, for any y ∈ (y1, y2), −L′ ≤ ∂f(y) ≤ L′. Therefore, f is L′-Lipschitz on [y1, y2] ∩ R. It is

obviously also convex on this set. Consider f restricted to C. According to [7, Lemma 6.3], the Lipschitz extension of

this function, ĝ : R→ R with ĝ(y) = miny′∈C {f(y′) + L′|y − y′|}, is also convex and L′-Lipschitz.

Then we show g = ĝ. For any y ∈ C, we have f(y) ≤ f(y′)+L′|y− y′| by Lipschizness; so ĝ(y) = f(y) = g(y)
on C. If y1 6= −∞, for any y < y1 and any y′ ∈ C, we have f(y1) − f(y′) ≤ L′(y′ − y1) by Lipschitzness and

y′ ≥ y1. This translates to f(y1)−L′(y− y1) ≤ f(y′)−L′(y− y′), and thus ĝ(y) = f(y1)−L′(y− y1) = g(y) for

y < y1. Similar holds for y > y2 when y2 6=∞.

Claim B.3. We have ∂g(y) = [∂f(y)]L′ for y ∈ R.

Proof. If y1 = ∞, then g is a linear function with coefficient −L′, and is obviously convex. By Claim B.1, we have

∂f(y) < −L′ on R, and thus [∂f(y)]L′ = {−L′} = ∂g(y) for all y ∈ R. Similar holds for y2 = −∞.

Now we consider the case where y1 6=∞ and y2 6= −∞.

• On (−∞, y1), g is linear and thus differentiable, so ∂g(y) = {−L′}. Also, we know from Claim B.1 that

∂f(y) ≤ −L′ for y ∈ (−∞, y1); so [∂f(y)]L′ = {−L′} = ∂g(y). Similar holds for (y2,∞).

• On (y1, y2), we have g = f and both are convex. Any convex function f on an open subset of R is semi-

differentiable and the subdifferential at point y is of the form [∂f−(y), ∂f+(y)] where ∂f−(y) is the left deriva-

tive and ∂f+(y) is the right derivative. Therefore, as the left and right derivative of f and g are the same in

(y1, y2), we have ∂g(y) = ∂f(y). By Claim B.1,−L′ ≤ ∂f(y) ≤ L′ on this range, we have ∂g(y) = [∂f(y)]L′ .
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• At y1 (if finite), the left derivative is ∂g−(y) = −L′, and the right derivative ∂g+(y) is ∂f+(y) if y2 > y1
and is L′ if y2 = y1. For y2 > y1, as −L′ ∈ ∂f(y1), we have ∂g(y) = [∂f(y)]L′ . For y2 = y1, we have

[−L′, L′] ⊆ ∂f(y1) and thus ∂g(y) = [∂f(y)]L′ . Similar holds for y2.

Then we consider ℓg . For a set U of scalar, we use U · x to denote {ux : u ∈ U}. We have [U · x]L =

{[ux]L : u ∈ U} =
{
min

{
L

‖x‖2u
, 1
}
ux : u ∈ U

}
= [U ]L/‖x‖2

· x. Therefore, ∂θℓg(θ;x) = ∂g(〈θ,x〉) · x =

[∂f(〈θ,x〉)]L/‖x‖2 · x = [∂f(〈θ,x〉) · x]L = [∂θℓf(〈θ,x〉)]L, which completes the proof.

B.2 Lower Bound for Binary Logistic Regression

Proof of Theorem 3.2. Since ℓ(θ; (x, y)) is convex in 〈θ, yx〉, as have been shown Lemma 3.1 (with x there be-

ing yx), for any (x, y), there exists another function ℓg(θ; (x, y)) that is convex in 〈θ, yx〉 and ∇θℓg(θ; (x, y)) =
[∇θℓ(θ; (x, y))]L for any θ. Let Lhuber (θ;D) = 1

n

∑n
i=1 ℓg(θ; (xi, yi)), which is also convex. For some convex set

C, let θhuber := argminθ∈C Lhuber (θ;D) and θ∗ := argminθ∈C L(θ;D). Let θpriv be the output of DPSGD on

objective function L.

To show a lower bound on E

[
L(θpriv ;D)

]
− L(θ∗;D), we would first show a lower bound on ‖θ∗ − θhuber ‖2

and an upper bound on ‖θpriv − θhuber ‖2, which together will give a lower bound on ‖θ∗ − θhuber ‖2. Then, using

strong convexity property of L, we translate that to lower bound on L(θpriv ;D)− L(θ∗;D).
It is enough to prove the result for dimension p = 1, as we can always set the other p− 1 dimensions to be 0. Let

D be {(1/2,+1)}2n ∪ {(1,−1)}n and C = R.

We have

ℓ(θ; (1/2,+1)) = log
(
1 + e−θ/2

)
, and ℓ(θ; (1,−1)) = log

(
1 + eθ

)

⇒∇θℓ(θ; (1/2,+1)) = − 1/2

1 + eθ/2
, and ∇θℓ(θ; (1,−1)) =

1

1 + e−θ

⇒∇2
θℓ(θ; (1/2,+1)) =

1

4

1

(1 + eθ/2)(1 + e−θ/2)
, and ∇2

θℓ(θ; (1,−1)) =
1

(1 + eθ)(1 + e−θ)

Given L, we have

ℓg(θ; (1/2,+1)) =

{
−Lθ + 2L log

(
1
2L − 1

)
+ log 1

1−2L for θ < 2 log
(

1
2L − 1

)

log
(
1 + e−θ/2

)
for θ ≥ 2 log

(
1
2L − 1

)

and

ℓg(θ; (1,−1)) =
{
log
(
1 + eθ

)
for θ ≤ − log

(
1
L − 1

)

Lθ + L log
(
1
L − 1

)
+ log 1

1−L for θ > − log
(
1
L − 1

)

as the loss function with gradient being [∇θℓ(θ; (1/2,+1))]L and [∇θℓ(θ; (1,−1))]L.

We have θ∗ = 0 as

∇θL(θ;D) = 0⇔ 2∇θℓ(θ; (1/2,+1)) +∇θℓ(θ; (1,−1)) = 0

⇔ − 1

1 + eθ/2
+

1

1 + e−θ
= 0⇔ θ = 0.

As for θhuber , we have

∇θLhuber (θ;D) =





2
3

−1/2
1+eθ/2

+ L
3 for θ ≥ 2 log

(
1
2L − 1

)

− 2L
3 + L

3 for θ ∈
(
− log

(
1
L − 1

)
, 2 log

(
1
2L − 1

))

− 2L
3 + 1

3
1

1+e−θ for θ ≤ − log
(
1
L − 1

) ,
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which is equal to 0 at 2 log
(
1
L − 1

)
. So we have θhuber = 2 log

(
1
L − 1

)
.

So we have ‖θ∗ − θhuber ‖2 = 2 log
(
1
L − 1

)
.

Now we bound ‖θhuber − θpriv ‖2. As for each xi in D, it is given that ‖xi‖2 ≤ 1, we have B = 1. As

the initial guess θ0 is 0, we have ‖θ0 − θ∗‖2 = 2 log
(
1
L − 1

)
. From Theorem 2.3, with probability ≥ 1 − δ,

Lhuber (θpriv ;D) − Lhuber (θhuber ;D) ≤ C · 2 log(1/L−1)
√

p log(1/δ) log(1/β)

nε for some positive constant C. We

set n0

3 =
96C log(1/L−1)

√
p log(1/δ) log(1/β)

Lε > max
(
20 log

(
1
L − 1

)
, 96
)
· C
√

p log(1/δ) log(1/β)

Lε . As n ≥ n0

3 >
20C log(1/L−1)

√
p log(1/δ) log(1/β)

Lε , we have Lhuber (θpriv ;D)−Lhuber (θhuber ;D) < 0.1L. We now translate this to

an upper bound on ‖θpriv − θhuber ‖2 (with high probability).

Let θ1 = 2 log
(

1
2L − 1

)
and θ2 = 2 log

(
2
L − 1

)
. We now show θpriv ∈ (θ1, θ2) with probability ≥ 1 − δ. We

know that for θ ≥ θ1, for Const = 1
3

(
L log

(
1
L − 1

)
+ log 1

1−L

)
,

Lhuber (θ;D) =
1

3

(
2 log(1 + e−θ/2) + Lθ

)
+ Const,

and we thus have

Lhuber (θhuber ;D) =
1

3

(
2 log

1

1− L
+ 2L log

(
1

L
− 1

))
+ Const

Lhuber (θ1;D) =
1

3

(
2 log

1

1− 2L
+ 2L log

(
1

2L
− 1

))
+ Const

Lhuber (θ2;D) =
1

3

(
2 log

2

2− L
+ 2L log

(
2

L
− 1

))
+ Const.

So for L < 1/4,

Lhuber (θ1;D) − Lhuber (θ
huber ;D) =

2

3

(

log
1

1− 2L
+ L log

(

1

2L
− 1

)

− log
1

1− L
− L log

(

1

L
− 1

)

)

=
2

3

(

(1− L) log
1− L

1− 2L
− L log 2

)

≥
2

3
(1− log 2)L > 0.2L > 0.1L.

Lhuber (θ2;D) − Lhuber (θ
huber ;D) =

2

3

(

log
2

2− L
+ L log

(

2

L
− 1

)

− log
1

1− L
− L log

(

1

L
− 1

)

)

=
2

3

(

log
2

2− L
+ L log

(

2

L
− 1

)

− log
1

1− L
− L log

(

1

L
− 1

)

)

≥
2

3

(

log(2)−
1

2

)

L > 0.1L.

Notice that Lhuber is convex, which means the derivative is monotone and the function is decreasing for θ <
θhuber and increasing for θ > θhuber . As θ1 < θpriv < θ2, if θpriv ≤ θ1 or θpriv ≥ θ2, then Lhuber (θpriv ;D)−
Lhuber (θhuber ;D) ≥ 0.1L, which contradicts to the fact that Lhuber (θpriv ;D) − Lhuber (θhuber ;D) < 0.1L.

Therefore, we can conclude that θpriv ∈ (θ1, θ2) with probability≥ 1− δ.

15



For θ ∈ (θ1, θ2), the 2nd order derivative of Lhuber is 1
6

1
(1+eθ/2)(1+e−θ/2)

≥ 1
12

1
1+eθ/2

, which is decreasing and

therefore≥ L
24 . This meansLhuber is L

24 -strongly convex for θ in this range. Therefore, the bound on the difference of

the loss translates to a bound on the ℓ2 distance and we have ‖θpriv −θhuber ‖22 ≤ C · 48 log(2/L−1)
√

p log(1/δ) log(1/β)

Lnε .

We then have

‖θpriv − θ∗‖2 ≥ ‖θ∗ − θhuber ‖2 − ‖θpriv − θhuber ‖2

≥ 2 log

(
1

L
− 1

)
−

√
48C log(2/L− 1)

√
p log(1/δ) log(1/β)

Lnε

≥ log

(
1

L
− 1

)

where the last inequality follows as for n > 96C
L

√
p log(1/δ) log(1/β)

ε , we have

√
48C log(2/L− 1)

√
p log(1/δ) log(1/β)

Lnε
≤ log

(
1

L
− 1

)
for any L < 1/4.

Let θ3 = − log
(
1
L − 1

)
and θ4 = log

(
1
L − 1

)
. As θ∗ = 0, the above inequality implies θpriv ∈ (−∞, θ3] ∪

[θ4,∞). Similarly, as L is convex with minimizer θ∗, we know L(θpriv ;D) ≥ min (L(θ3;D),L(θ4;D)).
Since

L(θ;D) =
1

3

(
2 log

(
1 + e−θ/2

)
+ log

(
1 + eθ

))
=

1

3
log

((
1 + eθ/2

)2
+
(
1 + e−θ/2

)2)

is an even function, we have

L(θ3;D) = L(θ4;D) =
1

3
log



(
1 +

√
1− L

L

)2

+

(
1 +

√
L

1− L

)2

 =

2

3
log

(
1√
L

+
1√

1− L

)
.

As L(θ∗;D) = log 2, we have, for L < 1/4,

L(θpriv ;D)− L(θ∗;D) ≥ 2

3
log

(
1√
L

+
1√

1− L

)
− log(2) ≥ 2

3
log

(
1 +

1√
L

)
− log(2)

≥ 2

3
log

(
1 +

1√
L

)
− log(2)

log(3)
log

(
1 +

1√
L

)
≥ 1

30
log

(
1 +

1√
L

)

≥ 1

60
log

1

L

This holds with probability≥ 1− β, and we can convert it back to an expectation bound and have

L(θpriv ;D)− L(θ∗;D) = Ω

(
log

1

L

)
.

B.3 Lower Bound for Quadratic Loss and Linear Regression

Let D = {x1, . . . , xn} with xi ∈ R and L(θ;D) = 1
n

n∑
i=1

(θ − xi)
2. In Theorem B.4, we show that running DP-SGD

with clipping can result in a constant excess empirical risk for this loss as well.
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Theorem B.4. Consider the objective function L(θ,D) as defined above. Let θpriv be the output of DP-SGD on

L(θ,D) with clipping norm L. There exists n, such that for ε = Θ(1) and δ = 1/nO(1), for any L, there exists a

dataset D = {xi}ni=1 with xi ∈ R, such that

E
[
L(θpriv ;D)

]
−min

θ∈C
L(θ;D) = Ω

(
L2
)
.

Proof. For any L, let D = {0, . . . , 0︸ ︷︷ ︸
n of them

, L, . . . , L︸ ︷︷ ︸
n of them

, 8L, . . . , 8L︸ ︷︷ ︸
n of them

} be a data set of 3n elements and let the constraint set

C = [0, 8L]. Let ℓ(θ;x) = (θ − x)
2

and we have L(θ;D) = 1
3n

∑3n
i=1 ℓ(θ;xi).

For any xi, consider the Huberized version [20] of the loss functions ℓ(·, xi): gi(θ) =
{
(θ−xi)

2 for |θ−xi|≤L/2

L|θ−xi|−L2

4 otherwise
.

Let Lhuber (θ;D) = 1
3n

∑
i

gi(θ). By Lemma 3.1, running DP-SGD on Lhuber without clipping is equivalent to the

running DP-SGD on L with clipping norm L.

First, by equating the gradients to zero, we know that

θ∗ := argmin
θ∈[0,8L]

L(θ;D) = 3L, and θhuber := argmin
θ∈[0,8L]

Lhuber (θ;D) = L

Then, by Theorem 2.3 with B = 8L and ‖C‖2 = 8L, we know that with high probability,

Lhuber (θ
priv ;D)− Lhuber (θ

huber ;D) = O

(

L2
√

log(1/δ)

nε

)

. (1)

Notice that at θ ∈ [L/2, 3L/2], Lhuber is 2/3-strongly convex. This fact, combined with (1), implies the following

w.h.p.
∥∥θpriv − θhuber

∥∥
2
= O

(
L log1/4(1/δ)√

nε

)
. Hence, we can conclude that w.h.p.

∥∥θpriv − θhuber
∥∥
2
= o(1).

Therefore, w.h.p.
∥∥θpriv − θ∗

∥∥
2
= 2L± o(1). Since L is 2-strongly convex everywhere, we finally conclude that

E
[
L(θpriv ;D)

]
− L(θ∗;D) = Ω(L2).

Because of Theorem B.4, one might wonder if it is at all possible to obtain o(1) excess empirical risk on L, with

DP-SGD. A simple modification to the construction of Lhuber would do the trick. Huberize the function as follows:

gi(θ) =
{
(θ−xi)

2, |θ−xi|≤8L

16L|θ−xi|−L2

4 o.w.
. This construction ensures that gi(θ) equals (θ − xi)

2 in the range θ ∈ [0, 8L] and is

16L-Lipschitz. Hence, running the DP-SGD with 16L-clipping norm, the constraint set C = [0, 8L], and the privacy

parameters (ε, δ), is equivalent to running DP-SGD on Lhuber with the gi’s while keeping the other parameters same.

Furthermore, notice that L(θ;D) = Lhuber (θ;D) for all θ ∈ C, and argmin
θ∈C

Lhuber (θ;D) = θhuber = 3L. By the

same argument as in the proof of Theorem B.4, one can conclude that w.h.p.
∥∥θpriv − θhuber

∥∥
2
= O

(
L log1/4(1/δ)√

nε

)
.

Hence, for sufficiently large n one has θpriv ∈ C. Combining these observations, we can conclude that with out

modified clipping norm,

E
[
L(θpriv ;D)

]
− argmin

θ∈C
L(θ;D) = O

(
L2
√
log(1/δ)

nε

)
. (2)

Comparing Theorem B.4 and (2) we observe that clipping norm plays a critical role in the convergence of DP-SGD. In

one case, the excess empirical risk is a constant, and in the other case it is Õ(1/n). Although, the above observation

was for one-dimensional loss functions, it can easily be extended to linear regression in higher-dimensions by formu-

lating the problem as follows: Each loss function ℓi is of the form (yi− 〈xi, θ〉)2, where yi = xi in the data set D and

xi has the first coordinate as one and rest all as zeros.
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B.4 Clipped Softmax Regression Does Not Correspond to a “Natural” Function

Proof of Theorem 3.3. Without loss of generality, let y = 1. Let x be any non-zero vector in R
p.

In the beginning, we state the formulas for the gradient, its norm and the clipped gradient. Let E(k)(θ) =

exp
(
θ(k

′) · x
)

. (We omit (θ) when it is clear from the context.) Recall the gradient of the cross-entropy loss is

∇θ(k) (θ; (x, y)) =

(
exp(θ(k)·x)

∑
K
k′=1

exp(θ(k′)·x)
− 1 (y = k)

)
· x =

(
E(k)

∑
K
k′=1

E(k′) − 1 (y = k)
)
· x, so we have

∇θ(1)ℓ (θ; (x, y)) = −
∑K

k=2 E
(k)

∑K
k′=1 E

(k′)
· x. (3)

For k ≥ 2,∇θ(k)ℓ (θ; (x, y)) =
E(k)

∑K
k′=1 E

(k′)
· x. (4)

The norm of the gradient∇θℓ(θ; (x, y)) is thus

‖∇θ (θ; (x, y))‖2 =

√√√√
K∑

k=1

‖∇θ(k) (θ; (x, y))‖22 = ‖x‖2 ·

√(∑K
k=2 E

(k)
)2

+
∑K

k=2

(
E(k)

)2

∑K
k′=1 E

(k′)
, (5)

which takes value in
(
0,
√

K
K−1‖x‖2

)
. Recall that Θ = {θ : ‖∇θ (θ; (x, y)) ‖2 > L}.

Recall G(θ) is the clipped gradient. We also define, for k ∈ [K], for θ ∈ R
p×K ,

G(k)(θ) := min

(
1,

L

‖∇θ (θ; (x, y)) ‖2

)
· ∇θ(k) (θ; (x, y)) ,

so G(θ) =
[
G(1)(θ), . . . , G(K)(θ)

]
.

When θ ∈ Θ, we have G(k)(θ) = L · ∇θ(k) ℓ(θ;(x,y))

‖∇θ(θ;(x,y))‖2
, and thus

G(1)(θ) = − L

‖x‖2

∑K
k=2 E

(k)

√(∑K
k=2 E

(k)
)2

+
∑K

k=2

(
E(k)

)2
· x,

For k ≥ 2, G(k)(θ) =
L

‖x‖2
E(k)

√(∑K
k=2 E

(k)
)2

+
∑K

k=2

(
E(k)

)2
· x. (6)

Notice that for any k ≥ 2, ∇θ(1)G(k) is zero as G(k) does not depend on θ(1); however, ∇θ(k′)G(1) may not be zero

everywhere as G(1) does not depend on θ(k
′) (we will prove this formally).

We will prove the theorem by contradiction. Suppose there exists a function f : C → R such that 1). Θ ∩ Co is

a non-empty set, 2). f is differentiable except for a set CN which is closed on C and has zero measure, and 3) G(θ)
is a subgradient of f . We will show that on an open subset of Θ ∩ C, f is differentiable but the 2nd derivative is not

symmetric, which contradicts the fact that any function with continuous second order partial derivative should have

symmetry of 2nd derivative in the interior of its domain.

We use Euclidean topology throughout the proof. When not specified, we talk about Euclidean topology in the

space Rp×K . We consider Lebesgue measure on R
p×K throughout the proof.

1. First, we show Θ is a non-empty open set in R
p×K .

Recall the formula for ‖∇θ (θ; (x, y))‖2 in (5), which is obviously a continuous function in R
p×K . Therefore,

the preimage of open set (L,∞) through ‖∇θ (θ; (x, y))‖2, which is exactly Θ, is an open set in R
p×K . By

assumption, Θ is non-empty.
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2. Second, let ΘG = Θ ∩
{
θ : ∀k, k′, ∇θ(k′)G(k)(θ) = ∇θ(k)G(k′)(θ)

}
be the “good” subset of Θ where the 2nd

derivative of f is symmetric if G is the derivative of f . We will show that ΘG is a closed set in Θ and has

Lebesgue measure 0.

Recall G(k)(θ) for θ ∈ Θ in (6). For any k ≥ 2, notice that G(k)(θ) does not depend on θ(1), so∇θ(1)G(k)(θ) =
0 for k ≥ 2.

Now we look at the derivatives of G(1). Let D(θ) =
(∑K

k=2 E
(k)
)2

+
∑K

k=2

(
E(k)

)2
. For any k′ ≥ 2,

∇θ(k′)G(1)(θ) =− LE(k′)

‖x‖2 (D(θ))
3/2

K∑

k=2

E(k)
(
E(k) − E(k′)

)
xx⊤.

As E(k) > 0 and x 6= 0, we have

∀k′ ≥ 2, ∇θ(k′)G(1)(θ) = 0⇔ E(2) = · · · = E(K)

⇔ 〈θ(2), x〉 = · · · = 〈θ(K), x〉.

It is also not hard to check that E(2) = · · · = E(K) is sufficient to guarantee ∇θ(k′)G(k)(θ) = ∇θ(k)G(k′)(θ)
for any k, k′ ≥ 2.

Therefore, we have ΘG =
{
θ ∈ Θ : 〈θ(2), x〉 = · · · = 〈θ(K), x〉

}
. We can define a function a on Θ with a(θ) =∑K

k=3|〈θ(2), x〉 − 〈θ(k), x〉|. Since a is continuous on domain Θ, the preimage of the closed set {0} through a,

which is exactly ΘG, is a closed set in Θ. Also, ΘG is obviously a lower dimensional subspace of Rp×K and

thus has measure 0.

3. Third, let the “bad” set be ΘB = Θ\ΘG. We will show ΘB ∩ Co is a non-empty set and is open on Co.

As ΘG is closed in Θ, ΘB, its complement, is an open set in Θ. As Θ is open in R
p×K , ΘB is also open in

R
p×K (since ΘB is the intersection of two open subsets in R

p×K). So ΘB ∩ Co is open on Co.

On the other hand, as Θ and Co are open, Θ ∩ Co is open. Additionally, by assumption, Θ ∩ Co is non-empty.

So Θ∩ Co has positive measure. Since ΘG has measure 0, ΘB ∩ Co = Θ ∩ Co\ΘG has positive measure and is

thus non-empty.

4. Finally, recall that f is differentiable everywhere except for a closed set on CN with measure zero. Obviously,

CN is also closed on Co. Then f is differentiable on Θ′
B := ΘB∩Co\CN , which implies that G is the gradient of

f on Θ′
B. Also, since ∀k, all partial derivatives of G(k) exists and is continuous, we know that f has continuous

2nd derivatives on Θ′
B .

As ΘB ∩Co is open and CN is closed on Co, Θ′
B is open on Co. Also, as CN has zero measure, Θ′

B is non-empty.

By Schwarz’s theorem, for any function that has continuous second order partial derivatives, it has symmetry of

2nd derivative in the interior of its domain. So we are supposed to see ∇θ(k)G(k′) = ∇θ(k′)G(k) for any pairs

of k and k′ on Θ′
B (since Θ′

B itself is non-empty and open in Co). However, this does not hold by definition of

ΘB. We therefore have a contradiction and such f cannot exist.

B.4.1 “Per-class” Clipping Does Not Resolve the Problem

Theorem B.5. Consider any sample (x, y) with x ∈ R
p\{0}, y ∈ [K] (for K ≥ 3) and any L > 0 such that

Θ = {θ : ‖∇θ(k)ℓ(θ; (x, y))‖2 > L for some k ∈ [K]} is non-empty. Let G(θ) be the “per-class” clipped gradient

of ℓ(θ; (x, y)). Consider any function f : C → R, C ⊆ R
p×K such that Θ ⊆ C. If f is differentiable everywhere

except for a set CN ⊆ C such that CN is a closed set on C and has zero Lebesgue measure, then it is not possible for

∇θf(θ) = G(θ) to hold for all θ ∈ Co\CN .
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Proof. Recall the formula for the gradient in (3) and the definition of E(k), and we have

‖∇θ(1)ℓ(θ; (x, y))‖2 =

∑K
k=2 E

(k)

∑K
k′=1 E

(k′)
‖x‖2 ,

For k ≥ 2, ‖∇θ(k)ℓ(θ; (x, y))‖2 =
E(k)

∑K
k′=1 E

(k′)
‖x‖2 .

Obviously, ‖∇θ(1)ℓ(θ; (x, y))‖2 =
∑K

k=2 ‖∇θ(k)ℓ(θ; (x, y))‖2. So ∇θ(k)ℓ(θ; (x, y)) for k ≥ 2 is clipped only when

∇θ(1)ℓ(θ; (x, y)) is clipped. We consider when some of them are clipped, i.e. the set Θ. There are two cases.

1. If all of them are clipped, then G(1) = − L
‖x‖2

x and G(k) = L
‖x‖2

x for k ≥ 2. G is basically a constant and we

have a valid gradient field.

2. If∇θ(1)ℓ is clipped and some of∇θ(k)ℓ for k ≥ 2 is not clipped, then G(1) = − L
‖x‖2

x and G(k) = E(k)
∑K

k′=1
E(k′) x.

So we have ∇θ(k)G(1) = 0 for any k ≥ 2 and ∇θ(1)G(k) = − E(k)E(1)

(
∑K

k′=1
E(k′))2

x⊤x which is always nonzero. So

we do not have a valid gradient field when this happens.

This is the set

ΘB = ∪K
k0=2Θk0

where Θk0 =

{

θ :

∑K

k=2 E
(k)

∑K

k′=1 E
(k′)

‖x‖2 > L and
E(k0)

∑K

k′=1 E
(k′)

‖x‖2 ≤ L

}

⊇

{

θ :

∑K

k=2 E
(k)

∑K

k′=1 E
(k′)

‖x‖2 > L

}

∩

{

θ :
E(k0)

∑K

k′=1 E
(k′)

‖x‖2 < L

}

It is easy to see that Θk0 is non-empty for any k0 ≥ 2. Also, Θk0 is an open set as
∑K

k=2 E(k)

∑
K
k′=1

E(k′) and E(k0)
∑

K
k′=1

E(k′)

are continuous. So ΘB is an non-empty open set.

As Θ ⊆ C, we know f is differentiable on Θ\CN which is an non-empty open set. Then f cannot exists

following the similar argument as in the proof of Theorem 3.3.

C Missing Proofs from Section 4

C.1 Proof of Theorem 4.1

Proof. We prove the theorem via the standard template for analyzing SGD methods [8]. Recall θpriv = 1
T

T∑
t=1

θt,

where {θ1, . . . , θT } are the models in each iterate of DP-GD. Let gt denote any subgradient in ∂L(L)
clipped(θt;D). By

convexity and the standard linearization trick in convex optimization [8], we have:

L(L)
clipped

(
θpriv ;D

)
− L(L)

clipped (θ
∗;D) ≤ 1

T

T∑

t=1

〈gt, θt − θ∗〉 (7)

Let V be the eigenbasis of
n∑

i=1

xix
T
i and let M = V V T . M is a positive semidefinite matrix and it defines a seminorm

‖·‖M (by Definition A.4). Let bt be the Gaussian noise vector added at time step t. To bound the error in (7), we will

use a potential argument w.r.t. the potential function

Ψt(θ) = Eb1,...,bt

[
‖θ − θ∗‖2M

]
= Eb1,...,bt−1

[
Ebt

[
‖θ − θ∗‖2M

∣∣∣ b1, . . . , bt−1

]]
.
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Recall the update step in DP-GD is θt+1 ← θt − η (gt + bt). We get the following by simple algebraic manipulation:

Ψt(θt+1) = Eb1,...,bt

[
‖(θt − θ∗)− η(gt + bt)‖2M

]

= Ψt(θt)− 2ηEb1,...,bt [〈gt + bt, θt − θ∗〉M ] + η2Eb1,...,bt

[
‖gt + bt‖2M

]
(8)

= Ψt(θt)− 2ηEb1,...,bt [〈gt + bt, θt − θ∗〉] + η2Eb1,...,bt

[
‖gt + bt‖2M

]
(9)

≤ Ψt(θt)− 2ηEb1,...,bt [〈gt, θt − θ∗〉] + η2
(
L2 + Ebt

[
‖bt‖2M

])

= Ψt−1(θt)− 2ηEb1,...,bt [〈gt, θt − θ∗〉] + η2
(
L2 + Ebt

[
‖bt‖2M

])

= Ψt−1(θt)− 2ηEb1,...,bt [〈gt, θt − θ∗〉] + η2
(
L2 + rank(M) · σ2

)
(10)

where (9) follows because gt lies in the subspaceM , and (10) follows because bt ∼ N (0, σ2Ip) and thus Ebt

[
‖bt‖2M

]
=

rank(M) · σ2. Rearranging the terms in (10), we have the following.

Eb1,...,bt [〈gt, θt − θ∗〉] ≤
1

2η
(Ψt−1(θt)−Ψt(θt+1)) +

η

2

(

L2 + rank(M) · σ2
)

(11)

Summing up (11) for all t ∈ [T ], averaging over the T iterations, combining with (7), and defining Ψ(θ) =

‖θ − θ∗‖2M , we get:

E

[
L(L)
clipped

(
θpriv ;D

)]
− L(L)

clipped (θ
∗;D) ≤ 1

2Tη
Ψ(0) +

η

2

(
L2 + rank(M) · σ2

)
(12)

Setting η to minimize the RHS, we have

E

[
L(L)
clipped

(
θpriv ;D

)]
− L(L)

clipped (θ
∗;D) ≤ ‖θ∗‖M

√
L2 + rank(M) · σ2

T

= ‖θ∗‖M
√

L2

T
+

2L2 log(1/δ) · rank(M)

n2ε2
,

where the equality follows by plugging in σ =
L
√

2T log(1/δ)

nε . Now, setting T = n2ε2, we have

E

[
L(L)
clipped

(
θpriv ;D

)]
− L(L)

clipped (θ
∗;D) ≤ L ‖θ∗‖M

√
1 + 2 · rank(M) · log(1/δ)

ε · n .

The last part of the theorem follows from the fact that when L ≥ B, L(L)
clipped(θ;D) = L(θ;D) for all θ ∈ R

p. This is

essentially the regime, where clipping has no effect.

C.2 Proof of Theorem 4.2

Proof. Recall that M is the projector to the eigenspace of the matrix
n∑

i=1

xix
T
i , and ‖·‖M being the corresponding

seminorm. Let θ1, . . . , θT be the sequence of models generated in Line 4 of Algorithm 1, and let the constraint set

C = R
p. Also, let bt be the Gaussian noise added in the t-th iteration. By the smoothness property of ℓ(z; ·), we have

the following:

L(θt+1;D) ≤ L(θt;D) + 〈∇L(θt;D), θt+1 − θt〉M +
β

2
‖θt+1 − θt‖2M

= L(θt;D)− 1

β
〈∇L(θt;D),∇L(θt;D) + bt〉M +

1

2β
‖∇L(θt;D) + bt‖2M

= L(θt;D)− 1

2β
‖∇L(θt;D)‖2M +

‖bt‖2M
2β

⇔ ‖∇L(θt;D)‖2M ≤ 2β (L(θt;D)− L(θt+1;D)) + ‖bt‖2M . (13)
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Therefore, averaging over all the t ∈ {0, . . . , T − 1}, we have the following:

1

T

T−1∑

t=0

‖∇L(θt;D)‖2M ≤
2β

T
(L(0;D)− L(θT ;D)) +

1

T

T−1∑

t=0

‖bt‖2M

≤ 2β

T
(L(0;D)− L(θ∗;D)) +

1

T

T−1∑

t=1

‖bt‖2M . (14)

Using standard Gaussian concentration, w.p. at least 1− γ over the randomness of {b1, . . . , bT } in (14), we have the

following.

1

T

T−1∑

t=0

‖∇L(θt;D)‖2M ≤
2β

T
(L(0;D)− L(θ∗;D)) +

8L2rank(M) · log(1/δ) log(T/γ)
n2ε2

(15)

By an averaging argument, we know there exists t̂ ∈ {0, . . . , T − 1} s.t.

‖∇L(θt̂;D)‖2M ≤
2β

T
(L(0;D)− L(θ∗;D)) +

8L2rank(M) · log(1/δ) log(T/γ)
n2ε2

.

As long as T ≥ βn2ε2·L(0;D)
2L2 log(1/δ) , we have ‖∇L(θt̂;D)‖M ≤ 4L

√
rank(M)·log(1/δ) log(T/γ)

εn . Now, notice that the ℓ2-

sensitivity [13] of ‖∇L(θt̂;D)‖M is at most 2L
n . Therefore, releasing tpriv ← argmin

t∈[T ]

‖∇L(θt;D)‖M + Lap
(
4L
n

)

conditioned on θ1, . . . , θT satisfies ε-differential privacy (by the analysis of the report-noisy-max algorithm [13]).

Therefore, the whole algorithm is (2ε, δ)-differentially private.

As for utility, we have w.p. at least 1− γ,

∥∥∇L(θtpriv ;D)
∥∥
2
=
∥∥∇L(θtpriv ;D)

∥∥
M

= O

(
L
√
rank(M) · log(1/δ) log(T/γ)

εn

)
.

Here, we have used the standard concentration property of Laplace random variable. This completes the proof.

D Dimension-independent Locally-private Empirical Risk Minimization

In this section, we show that the dimension-independence guarantee (Theorem 4.1) seamlessly extends to the setting of

local differential privacy (LDP) [43, 14, 24, 37]. Unlike central differential privacy where the data is held by a trusted

central curator, in the LDP setting, data is assumed to be distributed and perturbed before sending to any aggregator.

The semantics in terms of privacy is that the complete transcript of the interaction with an individual data record should

preserve LDP defined as follows.

Definition D.1 ((ε, δ)-Local differential privacy [24, 37]). A randomized algorithm A is (ε, δ)-locally differentially

private (LDP) if, for any pair of data records d, d′ ∈ D, and for all events S in the output range of A, we have

Pr[A(d) ∈ S] ≤ eε ·Pr[A(d′) ∈ S] + δ,

where the probability is taken over the random coins of A. A multi-player protocol is (ε, δ)-LDP if for all possible

inputs and runs of the protocol, the transcript of player is interactions with the server is (ε, δ)-LDP (for all settings of

the remaining data points).

We define algorithm DP-GDLDP to be Algorithm 1 with the following modifications to Lines 3 and 4:

3. gt =
1
n

n∑
i=1

(
clip (∇ℓ(θt; di)) +N (0, σ2)

)
.

4. θt+1 ← ΠC (θ − ηt · gt), where ΠC(v) = argmin
θ∈C

‖v − θ‖2.
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Essentially, at iteration t, each user provides a private version of their data, i.e., clip (∇ℓ(θt; di)) +N (0, σ2), and the

central aggregator averages them and updates the model. This fits perfectly in the LDP setting.

Theorem D.2 (Local differential privacy guarantee). DP-GDLDP is (ε, δ)-locally differentially private, if one sets the

noise variance as σ2 = 2L2T log(1/δ)
ε2 , where L is the clipping norm.

Theorem D.2 follows immediately from the privacy property of the Gaussian mechanism [13, 30].

In the following, we provide a corollary to Theorem 4.1 that highlights the dimension-independence of DP-GDLDP.

The proof of Corollary D.3 is identical to that of Theorem 4.1. As long as rank(M)≪ p, this guarantee is tighter than

the worst-case guarantee of Θ̃
( √

p

ε
√
n

)
[10, 37].

Corollary D.3. Following the same notation as in Theorem 4.1, setting the constraint set C = R
p, clipping norm L,

and running DP-GDLDP for T = nε2 steps with appropriate learning rate η, we have

E

[
L(L)
clipped

(
θpriv ;D

)]
− L(L)

clipped (θ
∗;D) ≤ L ‖θ∗‖M

√
1 + rank(M) · log(1/δ)

ε
√
n

.

Furthermore, if B is the Lipscthiz constant for the loss function ℓ(·; ·)), and L ≥ B, then we have:

E
[
L
(
θpriv ;D

)]
− min

θ∈Rp
L (θ;D) ≤ L ‖θ∗‖M

√
1 + rank(M) · log(1/δ)

ε
√
n

.

Here, rank(M) ≤ n, but can be much smaller.

Remark 1. While the results above are stated for (ε, δ)-LDP, they can easily be extended to ε-LDP (with the same

asymptotics), albeit using a different randomization method from [10].

D.1 Related Work on Choosing Optimal Clipping Norm

In this work, we show that an optimal choice of the clipping norm in DP-GD is necessary for attaining reasonable

excess empirical risk. Choosing the clipping norm “too low” introduces bias by changing the underlying objective,

whereas setting it “too high” introduces variance in the model estimate by increasing the noise level. There has been

both theoretical [18, 7, 26, 41, 4] and empirical research [40, 33] providing algorithms which can be used for choosing

a “near-optimal” value of the clipping norm. For instance, [40, 33] track differentially private estimates of various

statistics, like the percentage of the individual gradients getting clipped, or the mean and variance of the noisy gradient

estimates across the training, and adaptively adjust the value of the clipping norm. The work in [3] studies the bias-

variance trade-off on setting the clipping norm value; our work is tangential in that it provides risk bounds for any

value of the clipping norm. The algorithms in [18, 7, 26, 41] come in variety of flavors. One natural and powerful

approach [26] is to first compute the excess empirical risk attained by DP-SGD using a “potentially large” candidate

set of clipping norms. Then, choose the best clipping norm using a differentially private selection procedure. The

strength of this result is that the “cost of privacy” is almost independent of the number of possible clipping norms

tried.
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