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Abstract

Differentially private gradient descent (DP-GD) has been extremely effective both theoretically, and in practice,
for solving private empirical risk minimization (ERM) problems. In this paper, we focus on understanding the impact
of the clipping norm, a critical component of DP-GD, on its convergence. We provide the first formal convergence
analysis of clipped DP-GD.

More generally, we show that the value which one sets for clipping really matters: done wrong, it can dramatically
affect the resulting quality; done properly, it can eliminate the dependence of convergence on the model dimension-
ality. We do this by showing a dichotomous behavior of the clipping norm. First, we show that if the clipping norm
is set smaller than the optimal, even by a constant factor, the excess empirical risk for convex ERMs can increase
from O(1/n) to (1), where n is the number of data samples. Next, we show that, regardless of the value of the
clipping norm, clipped DP-GD minimizes a well-defined convex objective over an unconstrained space, as long as
the underlying ERM is a generalized linear problem. Furthermore, if the clipping norm is set within at most a con-
stant factor higher than the optimal, then one can obtain an excess empirical risk guarantee that is independent of the
dimensionality of the model space.

Finally, we extend our result to non-convex generalized linear problems by showing that DP-GD reaches a first-
order stationary point as long as the loss is smooth, and the convergence is independent of the dimensionality of the
model space.

1 Introduction

Over the past few years, there has been tremendous progress in differentially private convex empirical risk minimiza-
tion (ERM) [9, [7, 38, 1} 6, 129, 144} 21} 33 40, [15]. We know an almost-complete characterization of this problem
in terms of upper and lower bounds [7, |6], both for excess empirical risk and excess population risk. Differentially
private gradient descent (DP-GD) [39] (or its close variant, differentially private stochastic gradient descent (DP-SGD)
[7, 38} 11]]) provides the tightest upper bounds.

One important assumption in both the convergence and the privacy guarantees for DP-(S)GD is that the loss
functions for the ERM problem are {2-Lipschitz with an explicitly known Lipschitz constant. When the Lipschitz
constant is unknown or nonexistent, to guarantee privacy, the gradients of the individual loss functions are “clipped”
to a bounded ¢5-norm, typically referred to as the clipping norm [11} 29} 33 140]. We denote this variant by the clipped
DP-(S)GD. While there has been empirical progress on adaptively adjusting the clipping norm to maximize the signal-
to-noise ratio [33] [40]], the fundamental impact of clipping norm on DP-(S)GD has not yet been studied. In this
paper, we provide the first convergence analysis of clipped DP-GO for convex generalized linear problems (defined
in Section[2)). We show that the clipping norm has a significant impact. If set wrong, it can dramatically affect utility;

"While the results in this paper extend to DP-SGD, for brevity, we will only focus on DP-GD.
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if set properly, it can eliminate the dependence of convergence on the model dimensionality. We show a dichotomous
behavior:

i) Lower bound: If the clipping norm is smaller (even by a constant factor) than the maximum ¢2-norm of the gradi-
ent for any of the individual loss function, then the excess empirical risk can increase from O(1/n) to (1), where
n is the number of data samples. Furthermore, in certain ERM formulations (e.g., multiclass softmax regression),
we show that the clipped gradients may not correspond to the gradient field of any “natural” convex/non-convex
function.

ii) Upper bound: We provide the first formal convergence guarantees for clipped DP-GD. For unconstrained convex
generalized linear problems, we show that clipped DP-GD minimizes a well-defined objective function (which still
has the generalized linear problem structure, but may not correspond to the original ERM objective). Furthermore,
we show that its convergence does not have any explicit dependence on the number of model parameters: If the
clipping norm is within a constant multiple of the maximum £2-norm of the gradient for any of the individual loss
function, then one can obtain an excess empirical risk guarantee of O(\/E /en) for the original ERM objective,
where k is the rank of the feature matrix, and ¢ is the privacy parameter.

In the following, we formally introduce the problem, and state our contributions. We note that there is a line of
work on the practice and theory of gradient clipping [[17, 131} 32} 145]. Despite the similarity in name, these algorithms
are different as they clip the averaged gradient in each step, while in clipped DP-(S)GD, we need the individual
gradient to be clipped to get a reasonable privacy-utility trade-off.

Problem setup: Given a data set D = {dy,...,dy,} and an objective function £(6; D) = 1 3 £(6;d;) with ¢
i=1

being some loss function, DP-GD (Algorithm[I)) is an iterative procedure that optimizes £(8; D) as follows. At every
time step ¢, 1) Compute g, = |71\ > clip (V4(0¢;d)), (an approximation of) the gradient at the current model 6;.
deD

Here, clip(v) = v - min{ﬁ, 1}, and L is called the clipping norm, 2) Update model parameters as 0;41 <
2

0y —m - (gt + N(0,0? ]lp)), where 1) is the learning rate, and A'(0,021,) is the random noise to guarantee privacy,
with p denoting the number of model parameters. The variance o2 controls the strength of the achieved DP guarantee.
Throughout the paper, our privacy guarantees are for (g, §)-DP (Definition [2.1)) and our accuracy guarantees are for
excess empirical risk R(6) = L(0; D) — n%i,n L(¢'; D).

1.1 Our Contributions

In this paper, we provide upper and lower bounds on the convergence of clipped DP-GD on generalized linear prob-
lems. The results below, in particular, demonstrate the importance of choosing the right clipping norm. While the
design of algorithms to choose the clipping norm optimally is beyond the scope of this paper, in Appendix [D.1] we
provide a discussion of the prior work on effectively choosing the clipping norm.

1. Lower bound on the excess empirical risk: In Section we first provide a lower bound for binary logistic
regression showing that the excess empirical risk can increase from O(1/n) to Q(1) if the clipping norm is smaller
(even by a constant factor) than its optimal value. This lower bound holds for unconstrained optimization, i.e.,
where the model 6 is allowed to be anywhere in RP. In particular, the lower bound only depends on the norm of
the feature vectors, and does not depend on any bound on the model space. Consider the setting where the feature
vectors have £2-norm bounded by 1. For any clipping norm L < 1/4, and for any n larger than a constant ng(L),
we can construct a dataset with size n where the excess empirical risk of binary logistic regression for any DP
algorithm is €2 (log %) The proof of this lower bound follows by carefully exploiting the structure of a locally
quadratic region in the logistic loss, and demonstrating that this region is destroyed if the clipping norm is not
chosen properly.

Additionally, to formalize our argument, we prove a structural lemma (Lemma [3.I) to precisely quantify the un-
derlying optimization problem that clipped DP-GD solves. We show that clipping roughly corresponds to the
Huberization operation [19] commonly used in robust statistics. More importantly, we show that clipping does not



impact convexity for a common class of problems called generalized linear problems (which include binary logistic
regression and linear regression). For any clipping norm, there exists a well-defined convex problem which clipped
DP-GD optimizes. We use this lemma to upper bound the convergence of clipped DP-GD on convex generalized
linear problems as well.

. Clipping introduces non-convexity on multiclass softmax regression: In Section[3.2] we show that for softmax
regression with more than two classes, there does not exist any “natural” function (convex or non-convex) that
clipped DP-GD optimizes. Specifically, let G(6) denote the clipped gradient of cross-entropy loss for the softmax
regression. We show that there does not exist any function f which is differentiable everywhere except for a closed
set with zero Lebesgue measure such that Vg f(6) = G(0) for all § where f is differentiable. As a result, any of
the excess empirical risk guarantees for private convex ERMs [7, 5] or private non-convex optimization [42] cease
to hold.

. Dimension-independent excess empirical risk bounds for convex generalized linear problems: We consider
generalized linear problems, a class of problems with loss function £({f, z);y), where z is the feature vec-
tor and y is the response variable. If ¢ is convex in the first parameter, we call it a convex generalized lin-
ear problem. In Section using the structural lemma mentioned earlier (Lemma [3.]), for each ERM prob-

lem £(6; D) = L 3 ¢((6,x;);y;) and clipping norm L, we can find an objective function £ (0;D) =

clipped
i=1 pp

1 ; é((:ﬁp)ped ((6,%;);y;) that the clipped DP-GD actually optimizes. The loss function é((:ﬁp)ped is still convex in its

first parameter.

(L)
clipped?

an excess empirical risk of O(Lv/rank/(e - n)), where rank < n is the rank of the feature matrix. Furthermore, if
the original loss function ¢ is B-Lipschitz w.r.t. the £3-norm, and the clipping norm L > B, then the above excess
empirical risk corresponds to the original objective function £. To the best of our knowledge, this is the first formal
convergence guarantee of clipped DP-GD for any objective function.

We show that if the optimization is over an unconstrained space, then for objective function £ one can achieve

Existing lower bounds for constrained private convex learning [7] show that for excess empirical risk, a polynomial
dependence on the dimensionality of the model space is necessary. In contrast, our bound only depends on rank.
Our main insight is that, for DP-GD on generalized linear problems, the gradients lie in a low-rank subspace, and
the noisy gradients that DP-GD operates on do not significantly impact this low-rank structure due to the spherical
nature of the noise. Our results seamlessly extend to the local differentially private (LDP) variant of DP-GD (shown
in Appendix D), albeit with an increase by a /n factor in the excess empirical risk, which is necessary [[10].

While [22]] proved a similar dimension-independent risk guarantee for two other differentially private algorithms,
namely output perturbation [9]] and objective perturbation [9, 25], our result is notable in the following aspects.
First, we provide a more fine-grained control over the rank parameter. The result in [22] only provides guarantees
where rank is upper-bounded by n. Second, [22] crucially relies on the existence of a centralized data source,
whereas our result extends seamlessly to the LDP setting. Third, unlike the algorithms in [22], DP-GD does
not require convexity to ensure privacy. This is important because even if the overall optimization function is
non-convex, DP-GD still ensures differential privacy [7, [1]. Depending on the optimization profile, we may still
observe a dimension-independent convergence. We provide more evidence of this phenomenon below.

. Dimension-independent convergence to a first-order stationary point: In Sectiond.2] we extend our dimension-
independent result to non-convex generalized linear problems, i.e., where the loss function ¢ can be non-convex
but preserves the inner-product structure. Such problems appear commonly in robust regression [3| 28, 27]]. We
show that for this class of problems, DP-GD converges to a first-order stationary point (i.e., where the gradient
of the objective function is zero). Again, this convergence guarantee is independent of the model dimensionality,
and only depends on rank of the feature matrix. Specifically, we show that if the loss function for the non-convex
generalized linear problem is smooth and B-Lipschitz in the /5 norm, then DP-GD (with mild modification) with
clipping norm L > B outputs a model 6, such that the gradient of the objective function at 6, has ¢2-norm

%) (LM/(an)).



Algorithm 1 DP-GD: Differentially private gradient descent

Input: Dataset D = {d;,---,d,}, loss function: £ : R? x D — R, clipping norm: L, constraint set: C C R?,
noise multiplier: A, number of iterations: 7', noise variance: o2, learning rate: 7.
1: 6g < 0.

2. fort=0,...,T—1do
3 gy =13 clip(VE(by;d;)), where clip(v) = v - min{l, W}
i=1
4 Opp1 < 1c (6, —n (g, + N (0,0?))), where Il (v) = argmin |[v — 6.
fec
5: end for

T
6: return °*1V = = 3 6,
=1

While there has been work on understanding the convergence of variants of DP-(S)GD on non-convex losses [42],
this is the first result to demonstrate a dimension-independent convergence. At the heart of our result is a simple
folklore argument stated in [2] that shows first-order convergence of gradient descent for non-convex objectives.
We conjecture that our result can be extended to second-order convergence (analogous to [42]) under additional
assumptions on the loss function. A natural direction would be to modify the argument in [23] to be amenable to
DP-GD.

2 Preliminaries

Differential Privacy: Throughout the paper, we focus on approximate differential privacy [12, [11].

Definition 2.1 (Differential privacy [12} [I1]]). A randomized algorithm A is (g, d)-differentially private if, for any
pair of datasets D and D' differing in exactly one data point (i.e., one data point is present in one set, and absent in
another), and for all events S in the output range of A, we have

Pr[A(D) € S] < ¢ - PrlA(D') € 8] + 6,
where the probability is taken over the random coins of A.

For meaningful privacy guarantees, ¢ is assumed to be a small constant, and § < 1/n forn = |D|.

Generalized Linear Problems: For a major part of this paper, we focus on a special class of ERM problems called
generalized linear problems [35], where the loss function £(6; d) takes a special inner-product form £({6, x); y). Here,
x € RP is usually denoted as a feature vector, and y € R is the response. A data element d corresponds to a tuple
(x,y). Instead of the original feature vector in the data, x can also be extended to represent a mapped value ¢(x) of
original feature vector. We do not make this distinction here.

A more comprehensive preliminaries is in Appendix[Al

Differentially Private Gradient Descent: Now, we provide a formal version of Differentially Private Gradient De-
scent (DP-GD) (Algorithm [I). The version mentioned here is the one where the gradient g, is computed over the
complete data set, and the final model §°**V is an average of the models obtained so far. In practice, we may instead
use DP stochastic gradient descent (DP-SGD), where g, is computed over a random minibatch of the data, and the
final model #°**V is the last model. While our analytical results are for the former setting (due to brevity), they extend
to the latter with mild modifications to the proofs.

Theorem 2.2 (From [1}, [30]). Differentially private gradient descent (Algorithm|l) is (e, 6)-differentially private, if

. . 2L2T log(1/6
one sets the noise variance as o* = ﬁ(/).

Theorem 2.3 (From [7] and [39]). If the constraint set C is convex, the loss function £(0;d) is convex in the first
parameter, ||Vol(0;d)|| < B forall 8 € C and d € D, and the clipping norm L > B, then for objective function




n
L(;D) =1 2:1 £(0; d;), for appropriate choices of the learning rate and the number of iterations in differentially
i
private gradient descent (Algorithm[l), we have

< Ll = 6"[[2/plog(1/9)

E[£ (0757 D)] - £ (6%; D) 2

3

where 0" = argming . L(0; D) is the optimizer of L and 6y € C is the initialization of 6 in DP-GD. The correspond-
ing high-probability version is as follows: with probability at least 1 — 3,

< L||o — 6*[|21/plog(1/9) log(1/6)

En

L (6777 D) — L(6*; D)

3 Negative Effects of Gradient Clipping

In this section, we demonstrate a two-fold impact of clipping for convex generalized linear problems. In Section[3.1]
we show that clipping can increase the excess empirical risk from O(1/n) to €(1), even for fairly simple tasks like
binary logistic regression. Next, Section shows that for more complex tasks like multiclass softmax regression,
clipping can completely destroy the underlying convexity property. We show that DP-GD with gradient clipping does
not even correspond to optimizing any objective function which is differentiable almost everywhere. This class, in
particular, includes any convex function.

3.1 Aggressive Clipping Increases Excess Empirical Risk

We highlight the importance of choosing an appropriate clipping strategy by computing the explicit error that clipping
introduces in the excess empirical risk. We first provide an analytical tool (Lemma to precisely quantify the
objective function DP-GD optimizes when the underlying loss function is a generalized linear problem. This is a fairly
natural problem class including linear and logistic regression. Using Lemmal[3.1] we then construct a lower bound for
logistic regression that quantifies the bias introduced by clipping.

Let f (y) denote the subdifferential of f aty and dg¢(0’; x") denote the partial subdifferential of £ with respect to
6 at(0,x) = (0,x).

Lemma 3.1. Let f : R — R be any convex function and L € R be any positive value. For any x # 0, let

Y, = {y cu < —ﬁ Yu € 6f(y)} and Yy = {y Ty > ﬁ Yu € 6f(y)} If Y1 is non-empty, let y; = sup Yy;
2 2

otherwise, let y; = —oc. If Ys is non-empty, let yo = inf Y, otherwise, let yo = 0o. Let gx : R — R be

%

~ms W —y1) + fy) fory € (—o0,y1)
9x(y) = fly fory € [y1,y2l NR.
||xL||2 (y —y2) + f(y2)  fory € (y2,00)

~—

Then the following holds.
1. gx is convex.

2. Letl; : RP x RP - Rbe l;(0;x) = [ ((0,%)) forany 0,x. Let £, : RP x R? — R be £,(0;x) = gx({0,x))
for any 0,x. Then, for any 0, x, we have

0gly(0;x) = {min{i, 1} ‘uu € agéf(t?;x)} .
[[ell



Note: Lemma[3.1lis a generic tool for understanding the effect of clipping. In fact, it can be used to justify the use of
standard private convex optimization analysis in [7, 16, [15} 5] to DP-GD on convex generalized linear problems. We
use it for both Theorem[3.2]and Theorem 4.1}

The proof is based on the fact that clipping does not affect the monotonicity property of the derivative of one-
dimensional convex function. It can be found at Appendix [Bl

Using Lemma[3.1] in Theorem[3.2] we show that running DP-GD with aggressive clipping can result in a constant
excess empirical risk for logistic regression, in contrast to the best achievable excess empirical risk of O (1/n). The
proof can be found in Appendix [B.2l

For a dataset D = {(x1,¥1),...,(Zn,yn)} where z; € RP? is the feature and y; € {+1,—1} is the label,
and for a convex set C, logistic regression is defined as solving for 8* := argming., £(0; D) where L(0; D) =
LS (05 (24, y;)) with £(6; (2, y)) = log (1 4 e ¥(0:®),

Theorem 3.2. Consider the objective function L(0, D) for logistic regression as defined above. Let 0P*V be the
output of DP-GD on L(0, D) with clipping norm L. For any L < 1/4, there exists a positive integer no(L) such that
forany n > ng(L), there exists a dataset D = {(x;,y;)}1 withz; € {x € R? : ||z||2 < 1} and y; € {+1, -1},
such that

E[£(6°7; D)] — nin L(0; D) = Q (log(1/L)).

Note: The lower bound construction does not require constraining C. With C being the whole space RP, the opti-
mization problem considered here is unconstrained. Also, notice that L < 1/4 is not a strong requirement, as for any
(x4, y;), the gradient of logistic loss is upper bounded by ||z;||2 < 1. So, L = 1 is already equivalent to no clipping.

We can show a similar lower bound for linear regression where the objective functionis £(¢; D) = L 3" | (y; — (6, z:))?

and y; and x; are bounded. The proof follows the same strategy as in the lower bound for logistic regression. However,
to get an upper bound B on the gradient norm for Theorem[2.3] the construction needs C to have bounded radius. The
details are in Appendix[B.3l

For both logistic regression and the linear regression, it is obvious that if we set the clipping norm L to be higher
than the upper bound of the gradient norm, which exists in both cases, then we can still get O(l /m) excess empirical

risk. Therefore, we can conclude that picking a proper L is critical in convex optimization problems.

3.2 Clipped Multiclass Softmax Regression Doesn’t Correspond to any ‘“Natural” Function

We have shown that for any loss function ¢ that is convex in (6, x), optimizing ¢ with DP-GD is equivalent to optimizing
another convex function, though they may have different minimizers. Does the same apply to other common loss
functions, such as the cross-entropy loss for softmax regression with more than two classes? The answer is it might
not. In this section, we will show that for softmax regression, there does not exist any function whose subgradient is
the clipped gradient of the cross-entropy loss as long as the function is required to be differentiable almost everywhere,
which includes any convex function.

Consider a K-class classification problem for K > 3. Given a sample (z,y) with x € R? and y € [K], the
cross-entropy loss £ : RP*K x RP x [K] — Riis, for § = [0V ... §(F)],

(0 () = 3 1y = Ry log o200 2)
i(@y) =) L(y=k)log - -
k=1 Zﬁ(/:l exp (G(k ) x)

We then have the gradient of ¢ as

(s B exp (H(k) . :C) 3 B -
Vo (0; (2, y)) = <25_1 oxp (9(79') ) x) 1(y= k)) )

and the clipped gradient as G(6) := min (1, m) Vo (6; (x,y)) for any § € RP*X where Vg (0; (z,y)) =
(Vo (6; (,9)), .., Voo (6; (2,))]-



Theorem 3.3. Consider any sample (x,y) with x € RP\{0}, y € [K] (for K > 3) and any L > 0 such that
© = {0:||Vol(6; (z,y))|l2 > L} is non-empty. Let G(0) be the clipped gradient of £(0; (x,y)) as defined above.
Consider any function f : C — R, C C RP*X such that C° N © # (), where C° is the interior of set C. If f is
differentiable everywhere except for a set Cy C C such that Cy is a closed set on C and has zero Lebesgue measure,

then it is not possible for Vg f(0) = G(0) to hold for all § € C°\C.

As convexity implies differentiable almost everywhere [34] Theorem 25.5], if f is convex, we only need to require
Cn to be a closed set. Notice that the ¢; regularizer ||f]|, is only non-differentiable on a closed set, and the hinge loss,
lhinge(0; (z,y)) = max (0,1 — y(6, z)), is also non-differentiable on a closed set. Theorem [3.3] essentially rules out
the possibility that the field of clipped gradients corresponds to any single objective function in convex models like
softmax regression and SVMs with ¢; or /5 regularization, and in non-convex models like neural networks with either
smooth or non-smooth activation functions. The proof of Theorem[3.3is in Appendix[B.4

One might ask if the problem could be resolved by “per-class” clipping, i.e., clipping V()¢ individually for each
k? The answer is negative. We provide more details in Appendix[B.4.1]

4 Convergence of Clipped DP-GD on Generalized Linear Problems

In Section we provide the first convergence guarantee for DP-GD with clipped gradients. We show that there
exist a well defined ERM problem which clipped DP-GD optimizes when operating on convex generalized linear
problems. Furthermore, if the clipping norm is L, the loss function £(-;-) is ¢2-Lipschitz bounded by parameter
B < L, then clipped DP-GD optimizes the original ERM problem. The convergence is independent of the number of
model parameters p.

In Section[4.2] we extend this guarantee to non-convex generalized linear problems with smooth losses, and show
that DP-GD approximately converges to a first-order-stationary point (FOSP) with similar dimension-independent
guarantee, as long as B < L. This is the first dimension independent convergence guarantee for any non-convex
differentially private learning task.

4.1 Excess Empirical Risk Guarantees of Clipped DP-GD

Consider the following convex optimization problem. Let £(#; D) = & Z £({0,%;);y;) be an objective function

defined over the data set D = {(x1,41), ..., (Xn,yn)} With x; € RP and yl € R for all i € [n]. Assume the loss
function £((0,x); y) is convex in its first parameter and is B-Lipschitz (w.r.t. the 5-norm) over all § € R? and for all

x and y. The objective is to output #°**V that approximately solves arg min £(6; D) while satisfying DP. Now, we
9ERP
show a utility/privacy trade-off for DP-GD with clipped gradients.

From Lemma[3.Tlwe know that for a given clipping norm L, DP-GD optimizes Ldlpped (0;D) =1 Z ||pped(<97 Xi);Yi)s

where Eghp)ped(@, X;);y;) can be obtained from Lemma[3.1l We show the following. The proof can be found in Ap-

pendix[C

Theorem 4.1. Let 8y = OP be the initial point of DP-GD. Let 8* = argmin L
0cRP

cllpped( )» and M be the projector to

the eigenspace of the matrix Z x;X!. Setting the constraint set C = RP, clipping norm L, and running DP-GD on
i=1

L(9; D) for T = n2c? steps with appropriate learning rate 1, we get:

L|6* 3, /1 + 2 rank(M) - log(1/9)

en

er L *
E |:£<(:I|pped (910 D):| E((:Ilp)ped (9 7D) <
In particular, if B is the Lipscthiz constant for the loss function ((-;-) and L > B, then Eghp)ped (0; D) = L(0; D), i.e
there is no effect of clipping.
Here, rank(M) < n (but can be much smaller), and ||-| ,, is the seminorm w.r.t. the projector M.



We present our result for excess empirical risk, but it can be translated to excess population risk guarantees via
standard stability-based arguments [7, 22]]. The crux of our proof technique in Theorem[4.1lis to work in the subspace
generated by the feature vectors for generalized linear problem. We proved the guarantees only for DP-GD that returns
the average of the models generated during training. Our proof would extend seamlessly (by modifying the proofs of
Theorems 1 and 2 in [36]) to settings where the updates are over stochastic gradients computed over mini-batches of
the data.

The lower-bound in [7] shows that if one performs constrained optimization with differential privacy, then the
excess empirical risk is €2(,/p/(en)). This lower bound holds true for generalized linear problems as well. However,
since we perform unconstrained optimization, the lower bound does not apply to our result. In fact, the lower bound
does not hold even for general convex functions, as long as the underlying optimization problem is unconstrained.
It is an open question whether an analogous result as in Theorem .1l is possible for general unconstrained convex
optimization. Furthermore, it will be interesting to see if the dependence of O(1/4/n) in Theorem .1l can be reduced
to O(1/n), or it is tight. We leave this problem for future work.

The guarantee for the case L < B is of the same flavor as in [22]], wherein such a result was shown for two
different differentially private algorithms, namely, output perturbation, and objective perturbation (9, 25] for convex
optimization problems. Our result for DP-GD improves the state-of-the-art in the following ways. First, unlike output
perturbation and objective perturbation, DP-GD does not require convexity to ensure differential privacy. As a result,
DP-GD can be applied to non-convex losses and enjoys the same dimension-independence behavior as in the convex
case. Second, our results for DP-GD almost seamlessly transfer to the local differential privacy (LDP) setting (see
Definition[D.)). This is the first dimension-independent excess risk guarantee in the LDP setting. Output perturbation
and objective perturbation are fundamentally incompatible with LDP, as they require a centralized dataset to operate.
This result is detailed in Appendix[Dl

4.2 Reaching Approximate Stationary Points for Non-convex Generalized Linear Problems

In this section, we provide an extension to Theorem that captures the setting when the loss function £(z; -) may
be non-convex in z. Such loss functions appear commonly in robust regression, such as Savage loss [28]], Tan-
gent loss [27]], and tempered loss [3]. We show that as long as £(z;-) is S-smooth (see Definition [A.3), DP-GD
approximately reaches a stationary point on the objective function £(8; D), where 0 is called a stationary point if
VL(0; D) = 0. As in all the above-stated results in this section, the convergence guarantee will have no explicit
dependence on the number of dimensions. We use a folklore argument stated in [2] to prove our result.

Theorem 4.2. Recall the notation in Theorem Let tyi, « argmin ||VL(0; D), + Lap (2£). Then, the
0<t<T—1
algorithm that outputs 0y, . . ., 07 in conjunction with tui, is (2¢, 0)-differentially private. Furthermore, as long as

Bn2e2.L£(0P;D)
T= 212 log(})

L 1 T
9200 D =902 =0 ( £ - amcan) v (1) s () ).

Here, L is the Lipschitz constant, (3 is the smoothness constant of L(0; D), and ||-||,, is the seminorm w.r.t. the
projector M. We set a constant learning rate in Algorithm[llas n = %, and 0y = OP. Notice that rank(M) < n always

holds but rank(M ) can be much smaller than n.

and L > B, we have with probability at least 1 — +y,

Theorem[4.2] does not immediately imply converging to a local minima, or a bound on the population risk. How-
ever, it demonstrates that convergence of DP-GD can be dimension-independent even in the case of non-convex losses.
It is perceivable that this line of argument be extended for convergence to a local minimum using techniques similar
to those in [23]]. However, that would require an additional assumption beyond smoothness, i.e., Lipschitz continuity
of the Hessian. The proof of Theorem[4.2lis in Appendix[Cl
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A Background on Convex Learning

Empirical risk minimization (ERM): Let D = {d;,--- ,d,,} C D be a data set of n-samples drawn from the domain

D,and let £ : C x D — R be a loss function with C C RP. Then the empirical risk over the data set D is defined as

L(9; D) = L 3 £(6; d;). The objective of an empirical risk minimization (ERM) algorithm is to output a model 6 € C
i=1

that approximately minimizes the empirical risk £ over the set C. For the theoretical guarantees in this paper, we will
only look at ERM loss, and the excess empirical risk. By stability-based arguments [7, 135], one can easily translate
excess empirical risk for differentially private algorithms to their corresponding excess population risk, which can be
defined for amodel 6 € C as Eq.7 [¢(0; d)] where T is a given distribution over D.

Lipschitzness, Convexity, and Smoothness: We additionally require the following definitions to state our results.
These properties usually govern the rate of convergence of an algorithm for optimizing ERMs.

Definition A.1 (/2-Lipschitz continuity). A function f : C — R is B-Lipschitz w.r.t. the {2-norm over a set C C RP
if the following holds: V01,05 € C,|f(61) — f(62)| < B - |61 — 02|,

Definition A.2 ((Strong) convexity w.r.t. £3-norm). A function f : C — R is A-strongly convex w.r.t. the {s2-norm
overa setC C R? ifVa € (0,1),(61,02) € C x C:

Flafs + (1~ a)0a) < af(0:) + (1 - )7 (02) ~ A% o, g2

Function f is simply convex if the above holds for A = 0.

Definition A.3 (Smoothness). A function f : C — R is -smooth on C C RP if for all 6, € C and for all 65 € C, we
have

F(62) < F(02) + (V(62), 02— 01) + 5 02 — 6al}3.

Definition A.4 (Seminorm). Given a vector space V over a field F of the real numbers R, a seminorm on V is a
nonnegative-valued function p : V- — R with the following properties. For all a € F, and u,v € V:

1. Triangle inequality: p(u + v) < p(u) + p(v).
2. Absolute scalability: p(a - u) = |a| - p(u).

B Omitted Proof from Section 3

B.1 Generic Tool for Understanding Clipping
We first define some notations.

e For any vector v and positive scalar I, let [v], denote min{m, 1} - x, i.e., x projected onto the ¢2-ball of

radius I. If v is a scalar, then [v], = max{min{v, I'}, —I}. Also, for scalar, we use [v] . to denote min{v, I'},
and [v],_ to denote max{v, —I}.

e For a set S of scalar or vector, let [S]; denote {[v], : v € S}. Fora set S of scalar, let [S],. = {[v], :v € S}
and [S],- = {[v],- :v e S}

e For a set S of scalar, we write S > I if Vu € S, u > I; similar for <, > and <.

Proof of Lemma[3.1l We consider any fixed x, and for simplicity we use g to denote gx. We first show g is convex
and 0g(y) = [0f(y)],, for y € R using the following claims. And then apply that to £ and ¢, to prove the theorem.

Claim B.1. The following holds.

12



1. Ify1 € R, then —L' € 0f(y1), and thus Of (y) > —L' forally > 11, Of (y) < —L' forally < y1. Ify2 € R,
then L' € 0f(y2), and thus 0f (y) < L’ forally < ya, 0f(y) > L’ forall y > ya.

2. Ify1 = —oo, then Of (y) > —L' forally € R. If yo = oo, then 0f (y) < L' forally € R.
3. Ify1 = oo, then Of (y) < —L' forall y € R, and thus y = oo. If yo = —oo, then 0f (y) > L' forally € R,

and thus y; = —oo.
Proof. We consider the three cases separately.

1. By definition of y2 and monotonicity of subdifferential, for y > yo, we have 0f(y) > L/, and for y < yo,
min df (y) < L' (as subdifferential is closed).

We can find a sequence y*) — 3, and a sequence ¢(*) with ¢(*) € 9 f(y®)). As subdifferential is monotone,
we know ¢(*) is decreasing. Since g(*) is lower bounded by I, the sequence g'*) converges to a value > L'
Similarly, we can find a sequence y(k/) — Y5 , and a sequence g(k,) with g(k/) = min af(y(k/)). Since g(k,) is
increasing and upper bounded by L', the sequence g(’“/) converges to a value < L',

Recall that subdifferential is continuous. So both limy_, g(k) > L/ and limy/ o0 g(k/) < L' are contained in
df(yo), and we have L' € 9f(y2) by convexity of subdifferential. Then by monotonicity, for any y > ya, we
have 0f (y) > L’; for any y < ya, we have 0f(y) < L’. Similar argument can be applied to y;.

2. If Yy is non-empty and y; = oo, by monotonicity of subdifferential, we have df(y) < —L' for all y € R.
Therefore, Y5 = () and we have yo = oco. Similar holds for ys.

3. If Y; is empty and y; = —oo, then for any y, max df(y) > —L’ (as subdifferential is closed). By monotonicity
of subdifferential, 9f(y) > —L' forall y € R.

O

By monotonicity of subdifferential and the definition of y; and 2, we know that y; < y» always holds and thus g
is well-defined. Let C = [y1,y2] N R.

Claim B.2. We have that g is a convex function when y, # oo and ys # —oc.

Proof. By Claim[B.] for any y € (y1,y2), —L' < 0f(y) < L’. Therefore, f is L’-Lipschitz on [y1,y2] N R. Tt is
obviously also convex on this set. Consider f restricted to C. According to [7, Lemma 6.3], the Lipschitz extension of
this function, g : R — R with §(y) = minycc {f(y') + L'|y — ¥/'|}, is also convex and L’-Lipschitz.

Then we show g = §. Forany y € C, we have f(y) < f(y') + L'|y — y’| by Lipschizness; so §(y) = f(y) = g(y)
onC. If y; # —oo, for any y < y; and any y' € C, we have f(y1) — f(y") < L'(y’ — y1) by Lipschitzness and

y' = y1. This translates to f(y1) — L'(y —y1) < f(y') — L'(y — '), and thus §(y) = f(y1) — L'(y —y1) = g(y) for
y < y1. Similar holds for y > y2 when ys # oc. O

Claim B.3. We have 0g(y) = [0f(y)],, fory € R.

Proof. If y; = oo, then g is a linear function with coefficient — L', and is obviously convex. By Claim [B.1] we have
Of(y) < —L' on R, and thus [0f(y)],;, = {—L'} = 9g(y) for all y € R. Similar holds for yo = —oc.
Now we consider the case where y; # oo and yo # —o0.

e On (—o00,y1), g is linear and thus differentiable, so dg(y) = {—L'}. Also, we know from Claim that
Of(y) < —L' fory € (—o0,y1);50 [0f(y)],, = {—L'} = dg(y). Similar holds for (y2,c0).

e On (y1,y2), we have ¢ = f and both are convex. Any convex function f on an open subset of R is semi-
differentiable and the subdifferential at point y is of the form [0f_ (y), 0+ (y)] where Of_(y) is the left deriva-
tive and 9 (y) is the right derivative. Therefore, as the left and right derivative of f and g are the same in
(y1,y2), wehave Og(y) = O0f(y). By ClaimB.Il —L" < 9f(y) < L’ onthis range, we have dg(y) = [0f(y)],..
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e Aty (if finite), the left derivative is dg_(y) = —L/, and the right derivative dg (y) is 0f+(y) if y2 > »1
and is L' if yo = y1. For yo > y1, as —L' € 9f(y1), we have dg(y) = [0f(y)];,. For yo = y1, we have
[—L',L'] € 0f(y1) and thus Og(y) = [0f(y)],. Similar holds for y5.

Then we consider £,. For a set U of scalar, we use U - x to denote {ux:u € U}. We have [U-x|, =

{lux], :u e U} = {min{L 1}ux Tu € U} = [U]L/||xH2 - x. Therefore, 9ply(0;x) = 9g((0,%)) - x =

[l w

[Of (0, X>)]L/HXH2 -x = [0f((0,x)) - x|, = [0gly((0,x))],, which completes the proof. O

B.2 Lower Bound for Binary Logistic Regression

Proof of Theorem[3.2] Since £(0; (x,y)) is convex in (f,yx), as have been shown Lemma (with x there be-
ing yx), for any (z,y), there exists another function £,(6; (z,y)) that is convex in (f,yz) and Vgly(0; (z,y)) =
[Vol(6; (z,y))],, forany 6. Let Lyuper (0; D) = L 370, £4(6; (5, y:)), which is also convex. For some convex set
C, let 0""°* := argming e Luuper (0; D) and 6* := argming. £(0; D). Let 6°**V be the output of DPSGD on
objective function L.

To show a lower bound on [ [£(6°**"; D)| — L(6*; D), we would first show a lower bound on ||6* — 672 ||,
and an upper bound on ||#P*1Y — #huPeT ||, which together will give a lower bound on ||0* — §""°* ||,. Then, using
strong convexity property of £, we translate that to lower bound on L(6P*1" ; D) — L(0*; D).

It is enough to prove the result for dimension p = 1, as we can always set the other p — 1 dimensions to be 0. Let
Dbe {(1/2,+1)}*" U {(1,-1)}" and C = R.

We have
005 (1/2,+1)) = log (1+¢772), and  £(0;(1,—1)) = log (1+¢?)
V(0 (12, +1)) = ——2 and  Vol(6; (1, 1)) = ——
ot 2D = = ot0: (1 -D) = 17
1 1 1
=>V30(0;(1/2,+1)) = and  V20(0;(1, 1)) =

T A(14e2)(1+ e 072)

Given L, we have

0,06 (1/2, 41)) {—L6+2Llog(% —1) +log 15 ford < 2log (& — 1)

log (1 + 679/2) for 8 > 2log (% — 1)
and
log(1+89) f0r9§—log( —1)

ty(6; (1,-1)) = {

1
T
L9+L10g(%—1)+10gﬁ for 6 > —log(%

_1)

as the loss function with gradient being [V €(6; (1/2,+1))], and [Vel(0; (1, —1))],.
We have 6* = 0 as

VoL(0; D) =0 < 2Vol(0; (1/2,41)) + Vol (0; (1, 1)) = 0

- =0&<6=0.
T er T VT
As for 8°°°T | we have
22+ L for 6 > 2log (5 — 1)
VoLnuwer (0; D) = —% +§ for 6 € (— 1og(% - 1) ,2log (% — 1)) ,
2L | 1_ 1 1
_?'i‘gm f0r9§—log(f—1)
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which is equal to 0 at 2log (£ — 1). So we have """ = 2log (1 — 1).

So we have [|* — 6"P¢* ||, = 2log (+ — 1).

Now we bound ||§""* — gP=17 ||,. As for each z; in D, it is given that ||z;||2 < 1, we have B = 1. As
the initial guess 6y is 0, we have ||6yp — 6*]2 = 2log (% — 1). From Theorem 2.3] with probability > 1 — 6,

Liwper (0°777 ;D) — Lugper (0™ D) < C - 2log(1/E1)y plog(l/é) 51/ for some positive constant C. We
n O, (0] (0] (0] (0] n
ne _ 99CIoR(1/L-Y) VoToal U OR/E) o (2010g(_ 1),96) - CYVPREIDORD) 5o s me

set 3

20C log(1/L— 1)\/;010,‘; 1/9) log(l/B , we have Ly uper (eprlv . D) Liiper (ehuber : D) < 0.1L. We now translate this to

an upper bound on ||9prlv GhUber |l2 (with high probability).
Let 6; = 2log (5+ — 1) and 62 = 2log (2 — 1). We now show ¢°**" € (61, 6,) with probability > 1 — 5. We

know that for 8 > 6, for Const = % (Llog (% — 1) + log ﬁ)’

Ehuber (97 D) = (2 1Og(1 + 679/2) + Le) + COI"ISt7

L =

and we thus have

1 1
Liuper (0™ D) =3 (2 log —|— 2L log <Z - 1>> + Const
L (0 _ 1 21 + 2L 1 ! 1 + Const
huber la 3 Og og oL ons
1 2
Liuper (02; D =3 (2 log + 2L log (Z - 1)) + Const.

Sofor L < 1/4,

. huber | _ 2 1 L _
Ehuber (91,D) Ehuber (9 7D) - 3 <10g 1_9L + Llog <2L 1)

1 1
—IOgl—L_LlOg<E_1>>

2 1-L
—§<( L)log 2L—Llog2)
> % (1 -log2)L >0.2L > 0.1L.
. huber | _ 2 2 z _
Losser (02 D) — Lrsnee (67 D) = 3 log -2 + Llog ( 2 1>

1 1
_IOgl—L_LIOg<E_1>>
2 2 2
§<log2_L+Llog<Z—1>

1 1
—logl_L—Llog<Z—1>>
2

1

%

Notice that L, e 1S convex, which means the derivative is monotone and the function is decreasing for 6 <
05vber and increasing for 6 > 6P | Ag 01 < OPTLY < O, if 0PV < 0 or OPTLY > O, then Lyyper (0P D) —
Liuper (0727 ; D) > 0.1L, which contradicts to the fact that Ly pey (0°72Y ;D) — Lyuper (0°%°°7; D) < 0.1L.
Therefore, we can conclude that °*17 & (61, 602) with probability > 1 — 6.
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1 > 1_1
(1+e9/2)(1+e=9/2) = 12 14ef/2°

therefore > 2L—4. This means Ly per 1S i-strongly convex for 6 in this range. Therefore, the bound on the difference of

48log(2/L—1)4/plog(1/4)log(1/B)

Lne

For 6 € (61, 63), the 2nd order derivative of Ly ype, is % which is decreasing and

the loss translates to a bound on the /5 distance and we have ||§P*7 —ghuPer |2 < O
We then have

Hopriv _ 9*H2 > ”9* _ ohuber ”2 _ ||9priv _ ehuber ”2

- 2og (% 3 1) ) % 48C10g(2/L — 1)y/plog(1/0) Iog(1/5)

Lne
> log ( L 1)
- L

where the last inequality follows as for n > % plog(l/:) log(1/8)

, we have

Lne

\/48010g(2/L —1)/plog(1/4) log(1/5) < log (% - 1) forany L < 1/4.

Let 63 = —log (1 — 1) and 65 = log (£ — 1). As * = 0, the above inequality implies 6°**" € (—o0, 03] U
[04, 00). Similarly, as £ is convex with minimizer 6%, we know £(6P**V ; D) > min (L£(03; D), L(04; D)).
Since

1~ o7 ) - () ()

is an even function, we have

2 2
1 1-L L 2 1 1

As L£(0*; D) = log 2, we have, for L < 1/4,

. 2 1 1 2 1
LGP : D) — L(6": D) > =1 — + —— | —log(2) > -1 14+ — ) —log(2
2 1 log(2) ( 1) 1 ( 1)
>—log|l+—| — log|1+ —= | >—log |14+ —
3 g( \/Z> log(3) z)=30 2\ "L
1 et
=60 °L

This holds with probability > 1 — /3, and we can convert it back to an expectation bound and have

L(0°*7; D) — £(6%; D) = Q <1og %) .

B.3 Lower Bound for Quadratic Loss and Linear Regression

Let D = {z1,...,2z,} withz; € Rand £(¢; D) = 1 3" (6 — z;)2. In Theorem[B:4l we show that running DP-SGD
i=1
with clipping can result in a constant excess empirical risk for this loss as well.
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Theorem B.4. Consider the objective function L(0, D) as defined above. Let 0°*V be the output of DP-SGD on
L(0, D) with clipping norm L. There exists n, such that for e = ©(1) and § = 1/n°®), for any L, there exists a
dataset D = {x;}" | with z; € R, such that

E[£(0°77;D)] — min £(0; D) = (L?).

Proof. Forany L,let D = {0,...,0,L,...,L,8L,...,8L} be a data set of 3n elements and let the constraint set
——— N N——
n of them  n of them n of them

C =[0,8L). Let £(6;x) = (8 — x)° and we have £(0; D) = 5= 37" £(6; ;).

(0—a)2 for |0—z;|<L/2

L|0—xz;|— LTz otherwise

For any x;, consider the Huberized version [20] of the loss functions £(-, z;): ¢;(0) = {
Let Lyyper (0; D) = % >~ gi(6). By Lemma3dl running DP-SGD on L., without clipping is equivalent to the

running DP-SGD on £ with clipping norm L.
First, by equating the gradients to zero, we know that

0* := argmin £(0; D) = 3L, and §"**°* := argmin Ly, pe, (0; D) = L
0€[0,8L] 0€[0,8L]

Then, by Theorem[2.3with B = 8L and ||C||2 = 8L, we know that with high probability,

; L% /log(1/6
Lowper (0°77 1 D) — Lowper (07°°7: D) = O (M> . (1

ne

Notice that at 8 € [L/2,3L/2], Lnuper is 2/3-strongly convex. This fact, combined with (), implies the following
w.hp. ||gp=iv — ghuber || — O (M). Hence, we can conclude that w.h.p. |27+ — g™2== || = o(1).

Jne
Therefore, w.h.p. HGpri" — 0" H2 = 2L 4+ 0(1). Since L is 2-strongly convex everywhere, we finally conclude that
E [E(Gpri" ; D)} — L(6*; D) = Q(L?). O

Because of Theorem [B.4] one might wonder if it is at all possible to obtain o(1) excess empirical risk on £, with
DP-SGD. A simple modification to the construction of Ly, would do the trick. Huberize the function as follows:

—X; 2 —X; . . . .
g:(0) = {(196“;)) ’ |T Lé‘fif. This construction ensures that g;(#) equals (§ — x;)? in the range 6 € [0,8L] and is
—Ty -z oW

16 L-Lipschitz. Hence, running the DP-SGD with 16 L-clipping norm, the constraint set C = [0, 8L], and the privacy

parameters (¢, 0), is equivalent to running DP-SGD on L., With the g;’s while keeping the other parameters same.

Furthermore, notice that £(0; D) = Lyuper (0; D) forall 8 € C, and arg min Lyype, (6; D) = 0°9°%F = 3. By the
gec

same argument as in the proof of Theorem[B.4] one can conclude that w.h.p. [|§F¥1" — gruer H2 =0 ( %).

Hence, for sufficiently large n one has °**V € C. Combining these observations, we can conclude that with out
modified clipping norm,

E[L£(6°*7;D)] — ar%er?in L(6;D)=0 <L27 “125(1/5)> . 2)

Comparing Theorem[B.4and (2)) we observe that clipping norm plays a critical role in the convergence of DP-SGD. In
one case, the excess empirical risk is a constant, and in the other case it is 0(1 /n). Although, the above observation
was for one-dimensional loss functions, it can easily be extended to linear regression in higher-dimensions by formu-
lating the problem as follows: Each loss function ¢; is of the form (y; — (x;, #))?, where y; = x; in the data set D and
x; has the first coordinate as one and rest all as zeros.
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B.4 Clipped Softmax Regression Does Not Correspond to a ‘“Natural” Function

Proof of Theorem[3.3] Without loss of generality, let y = 1. Let  be any non-zero vector in R?.
In the beginning, we state the formulas for the gradient, its norm and the clipped gradient. Let F(*) 0 =

exp (9(’“/) . :C) (We omit () when it is clear from the context.) Recall the gradient of the cross-entropy loss is

exp(6F) .z (k)
VQ(k) (9, (l',y)) = (#M -1 (y = ]{)) - r = (W -1 (y = k)) -, SO we have
iy B
Vol (0;(z,y)) = —==——. 3
a(1) ( (‘T y)) 2521 E(k/) z ( )
For k > 2, Vg £ (6 (2.9)) = —r @
ork >2, Vol (0;(z,y) = —g——— 7
D= BH)
The norm of the gradient Vof(0; (z,y)) is thus
K 2 K 2
190 65l = || 3 ¥ 651 = o (KL ) E ) ®)
o U3\, Y 2 = (k) LY 9 = [|T||2 - K ; )
k=1 D= B®)
which takes value in (O, %Hxﬂg) Recall that © = {6 : ||V (0; (x,y)) || > L}.
Recall G(#) is the clipped gradient. We also define, for k € [K], for § € RP*K,
69 0) = min (1 o ) Vi (05 (0),
Ve (0 (z,9)) ll2
so G(0) = [GN(0),...,GE(0)].
(k) _ 7.V (k) £(0;(z,y))
When 6 € ©, we have G\")(0) = L T @@, and thus
K k
G(l)(e) _ _ L Zk:Q E( ) -
H$||2 K (k) 2 K (1)) 2
(Zk:QE ) + Xea (BW)
L E®)
For k > 2, GW(9) = . (6)

N

Notice that for any k > 2, V) G is zero as G*) does not depend on ) however, \ Y% elSy may not be zero
everywhere as G(*) does not depend on 0+ (we will prove this formally).

We will prove the theorem by contradiction. Suppose there exists a function f : C — R such that 1). © N C° is
a non-empty set, 2). f is differentiable except for a set Cy which is closed on C and has zero measure, and 3) G(6)
is a subgradient of f. We will show that on an open subset of © N C, f is differentiable but the 2nd derivative is not
symmetric, which contradicts the fact that any function with continuous second order partial derivative should have
symmetry of 2nd derivative in the interior of its domain.

We use Euclidean topology throughout the proof. When not specified, we talk about Euclidean topology in the
space RP* X We consider Lebesgue measure on R?* X throughout the proof.

1. First, we show © is a non-empty open set in RP* X

Recall the formula for ||V (6; (x,y))]|, in (), which is obviously a continuous function in R?**. Therefore,
the preimage of open set (L, 0o) through ||V (6; (z,y))]|,, which is exactly ©, is an open set in RP*¥. By
assumption, © is non-empty.
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2. Second, let O = O N {6‘ kK Voun GF(0) = Vo G(’“/)(H)} be the “good” subset of © where the 2nd
derivative of f is symmetric if G is the derivative of f. We will show that O¢ is a closed set in © and has
Lebesgue measure 0.

Recall G¥) () for § € © in (@). For any k > 2, notice that G(¥)(#) does not depend on 1), so V) G**) (0) =
0 for k > 2.

2
Now we look at the derivatives of GM). Let D(6) = (2522 E(k)) +3 0, (E(k))Q. For any k' > 2,

LE®) K ,
Voun G (0) = — — > E® (E(’“) _Ek* >) zz’.
lzll2 (D(9))”" =

As E®) > 0 and = # 0, we have

VE > 2, Voo, GY (@) =0 E? =... = g
& (09,2) = -+ = (00),2)
It is also not hard to check that E® = ... = E(¥) is sufficient to guarantee V., G*) (6) = Vyu G*)(0)
forany k, k' > 2.
Therefore, we have O¢ = {6 € © : (02, 2) = ... = (0'%) ) }. We can define a function a on © with a(6) =

Zf:3|<0(2) ,x) — (A%, 2)|. Since a is continuous on domain O, the preimage of the closed set {0} through a,
which is exactly O, is a closed set in ©. Also, O is obviously a lower dimensional subspace of R?*¥ and
thus has measure 0.

3. Third, let the “bad” set be © 5 = ©\O¢. We will show O N C° is a non-empty set and is open on C°.

As O is closed in ©, Op, its complement, is an open set in ©. As © is open in RP*K Qg is also open in
RP*K (since O is the intersection of two open subsets in R?*X). So © 5 N C° is open on C°.

On the other hand, as © and C° are open, © N C° is open. Additionally, by assumption, © N C° is non-empty.
So © N C? has positive measure. Since O has measure 0, © 5 N C° = © NC°\O¢ has positive measure and is
thus non-empty.

4. Finally, recall that f is differentiable everywhere except for a closed set on C with measure zero. Obviously,
Cn is also closed on C°. Then f is differentiable on ©’; := © g NC°\Cn, which implies that G is the gradient of
f on ©’5. Also, since Vk, all partial derivatives of G*) exists and is continuous, we know that f has continuous
2nd derivatives on ©'5.

As ©pNC°isopenand Cy is closed on C°, ©’5 is open on C°. Also, as C has zero measure, O is non-empty.

By Schwarz’s theorem, for any function that has continuous second order partial derivatives, it has symmetry of
2nd derivative in the interior of its domain. So we are supposed to see V) G = Ve(k/)G(k) for any pairs
of k and k' on ©'y (since O'; itself is non-empty and open in C°). However, this does not hold by definition of
© . We therefore have a contradiction and such f cannot exist.

O

B.4.1 ‘“Per-class” Clipping Does Not Resolve the Problem

Theorem B.5. Consider any sample (z,y) with x € RP\{0}, y € [K] (for K > 3) and any L > 0 such that
O = {0:||Vowml(0; (x,y))||l2 > L for some k € [K|} is non-empty. Let G(0) be the “per-class” clipped gradient
of L(0; (z,y)). Consider any function f : C — R, C C RP*X such that © C C. If f is differentiable everywhere
except for a set Cy C C such that Cy is a closed set on C and has zero Lebesgue measure, then it is not possible for
Vo f(0) = G(0) to hold for all § € C°\Cy.
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Proof. Recall the formula for the gradient in (3) and the definition of E®) and we have

Yieeg B
IVoa) £(6; (, y))”z 2521 B ||17H27
For k > 2, [V (0 B®
> : A
or k > 2, || 1) ( ,(a:,y))||2 Zk’ 1E(k/ || Hz

Obviously, [|[Vem £(0; (z,y))|l, = Zszz Vo £(0; (z,y)) 5. So Vg £(0; (x,y)) for k > 2 is clipped only when
Vo £(0; (x,y)) is clipped. We consider when some of them are clipped, i.e. the set ©. There are two cases.

1. If all of them are clipped, then G(1) = —Wx and GF) = = T H x for k > 2. G is basically a constant and we
have a valid gradient field.
2. If V)£ is clipped and some of V) £ for k > 2 is not clipped, then G(1) = —ﬁx and GF) = %x
So we have V) G = 0 for any k > 2and V o GF) —%aﬁx which is always nonzero. So
0 0 (ZK R )

we do not have a valid gradient field when this happens.
This is the set

Op = Uf —»Ok,

E (ko)
where O, =< 0 : Zk 2 HacH2 > Land —7——— |lz|, < L
Zk’:l E(kl Zk/:l E(kl)
K (k) (ko)
E
oozl s pbnde 2y, <1
2521 E) 2521 E®)
It is easy to see that @, is non-empty for any kg > 2. Also, O, is an open set as S, BY and gt
y ko pty Yy Ro =2 2. > Fko p YK _ EG) KB

are continuous. So O g is an non-empty open set.

As © C C, we know f is differentiable on ©\Cx which is an non-empty open set. Then f cannot exists
following the similar argument as in the proof of Theorem[3.3]

O
C Missing Proofs from Section 4]
C.1 Proof of Theorem [4.1]
T
Proof. We prove the theorem via the standard template for analyzing SGD methods [8]. Recall §°%V = % > 0y,
t=1

where {61, ...,07} are the models in each iterate of DP-GD. Let g; denote any subgradient in Yo
convexity and the standard linearization trick in convex optimization [8], we have:

cllpped (et; ) y

clipped cllpped

T
B (e D) - £ (o Z gi,0; — 0%) @)

3
Let V be the eigenbasis of Y x;x7 andlet M = VVT. M is a positive semidefinite matrix and it defines a seminorm

=1
||| 5, (by Definition[A.4). Let b; be the Gaussian noise vector added at time step ¢. To bound the error in (7), we will
use a potential argument w.r.t. the potential function

U,(0) = Ey, .. [||9 9*||M] =y, .5, [[E,,t [||9—9*||?W‘b1,...,bt,1H.
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Recall the update step in DP-GD is 6;1 < 6; — 1 (g + b:). We get the following by simple algebraic manipulation:

Wi(011) = Eou.eo [0 = 07) = (g + be) 3]

= Uy (0;) — 2nFp, .. b, [(gt + b, 0 — 0" pr) + 1°Epy b, [Hgt + th?M} ®)
= U(0:) — 2nEs, ..., [(9: + be, 0 — 0°)] + 1°Ep, b, [Hgt + th?w} ®
< Wi(00) = 200, [(g0, 00— 07)] + 1P (L2 + Es, [Ioell}] )
= 1 (00) = 20Fp,.., (90,0 — 0%)] + o (12 + o, [100]1])

2

=Wy 1(0:) — 20w, b, [(9t,0: — 0°)] +7° (L + rank(M) - o) (10)

where (9) follows because g; lies in the subspace M, and (I0) follows because b, ~ N (0, 0 1,,) and thus Ep, [Hbt HM} =

rank(M) - o2. Rearranging the terms in (I0), we have the following.
Eor..otn ({90, 00 = 07)] < o (xpt 1(0:) — Wi (0ei1)) + g (L% + rank(M) - 0?) (11)
Summing up () for all ¢ € [T], averaging over the T iterations, combining with (), and defining ¥(§) =
16 = 67|13, we get:
E[c® (0. D)] - 2P (6%:D) < ——w(0) + 7 (L2 + rank(M) - o> 12
cllpped( ) cllpped( ’ )— 2T77 ( ) 2( +ran ( ) U) ( )

Setting 7 to minimize the RHS, we have

L riv . . L2 + rank(M) - 02
|:£((:I|p)ped (910 ’D)} - Ecllpped (9 ) < ”9 |M\/ T( )
16" L? n 2L%1og(1/6) - rank(M)
M\ T n2e? ’

where the equality follows by plugging in o = Liﬂil:g(lm

. Now, setting T = n2e2, we have

E [E( (eprlv . D)} L(L) ( *; D) < L ||9*||JW \/1 +2- rank(M) 1Og(1/5)

clipped clipped c-n

The last part of the theorem follows from the fact that when L > B, Echpped(H; D) = L(6; D) for all § € RP. This is
essentially the regime, where clipping has no effect. O

C.2 Proof of Theorem 4.2]

Proof. Recall that M is the projector to the eigenspace of the matrix Z x;X; , and ||-||,; being the corresponding

seminorm. Let 01, ..., 607 be the sequence of models generated in L1ne 4 of Algorlthml, and let the constraint set
C = R?. Also, let b; be the Gaussian noise added in the ¢-th iteration. By the smoothness property of ¢(z; -), we have
the following:

£(6041:D) < £(04; D) + (VL0 D), s — oo + 5 [00s1 — 6l

1 1
= L(0;; D) — B<vc(9t; D),VL(0:; D) + by)ar + %5 VL(0:; D) + b3,

= L(6;; D) — 1 IVL(6,; D)3, + 18413
ty 2[3 ty M 2[_3
& VL0 D)3, < 28 (L(0:: D) — L(Brs1: D)) + [|be[3, - (13)
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Therefore, averaging over all the ¢ € {0,...,T — 1}, we have the following:

T-1

7 2 £ DIy < 57 (£0: D)~ £(0r: D i b0l
< 2 (£(0:D) - £ D)) + % S Il (14)
t=1
Using standard Gaussian concentration, w.p. at least 1 — « over the randomness of {b1, ..., br} in (I4), we have the
following.
7 Z 1@ D), < 2 (200: ) - £ ) 4 PN BUDIST) g
By an averaging argument, we know there exists ¢ € {0,...,7 — 1} s.t.
V20 D)3y < 22 (2005 D) — (o)) + S0k Jos(1/0) logT/),

As long as T > %ﬁ/g), we have ||[VL(6;; D), < 4L\/rank(1\{)'1§i(l/5) 5(T/%) " Now, notice that the lo-

sensitivity [13] of |VL(0;; D)||,, is at most 2L Therefore, releasing ¢y, «— argmin ||[VL(6y; D)||,, + Lap (££)
te[T]

conditioned on 61, ..., 0 satisfies e-differential privacy (by the analysis of the report-noisy-max algorithm [13]).
Therefore, the whole algorithm is (2¢, ¢)-differentially private.
As for utility, we have w.p. at least 1 — ~,

Ly/rank(M) -log(1/6)log(T/~)
||V£(9tpm;D)H2 = ||V£(9tpm;D HM =0 ( \/ en '
Here, we have used the standard concentration property of Laplace random variable. This completes the proof. o

D Dimension-independent Locally-private Empirical Risk Minimization

In this section, we show that the dimension-independence guarantee (Theorem[4.1]) seamlessly extends to the setting of
local differential privacy (LDP) [43] |14} 24} |3/]]. Unlike central differential privacy where the data is held by a trusted
central curator, in the LDP setting, data is assumed to be distributed and perturbed before sending to any aggregator.
The semantics in terms of privacy is that the complete transcript of the interaction with an individual data record should
preserve LDP defined as follows.

Definition D.1 ((¢, 6)-Local differential privacy [24} 37]). A randomized algorithm A is (g,0)-locally differentially
private (LDP) if, for any pair of data records d,d’ € D, and for all events S in the output range of A, we have

Pr[A(d) € 8] < ¢ - Pr[A(d) € 8] + 6,

where the probability is taken over the random coins of A. A multi-player protocol is (e, 8)-LDP if for all possible
inputs and runs of the protocol, the transcript of player is interactions with the server is (¢, 8)-LDP (for all settings of
the remaining data points).

We define algorithm DP-GD) pp to be Algorithm [[with the following modifications to Lines 3 and 4:
3.9, =+ Z (clip (V£(6y; d;)) + N(0,52)).

1=1

4. Opy1 < e (0 —nt - g4), where T (v) = argmin ||v — 0||2.
oecC
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Essentially, at iteration ¢, each user provides a private version of their data, i.e., clip (V£(6;; d;)) + N(0,0?), and the
central aggregator averages them and updates the model. This fits perfectly in the LDP setting.

Theorem D.2 (Local differential privacy guarantee). DP-GD\ pp is (g, 0)-locally differentially private, if one sets the

2 _ 2L%Tlog(1/6)
52

noise variance as o< = , where L is the clipping norm.

Theorem[D.2] follows immediately from the privacy property of the Gaussian mechanism [13] [30].
In the following, we provide a corollary to Theorem[.T]that highlights the dimension-independence of DP-GD) pp.
The proof of Corollary [D.3lis identical to that of TheoremE.1]l As long as rank(M) < p, this guarantee is tighter than

the worst-case guarantee of 5) ( %) (10O} [37]].

Corollary D.3. Following the same notation as in TheoremH.1| setting the constraint set C = RP, clipping norm L,
and running DP-GD\ pp for T = ne? steps with appropriate learning rate 1, we have

_ L1l \/1+ rank(M) - log(1/6)
< ~G :

Furthermore, if B is the Lipscthiz constant for the loss function {(-;-)), and L > B, then we have:

E [£pea (07275 D) | = £ (075 D)

clipped clipped

. , L|0*||,; /1 + rank(M) - log(1/6)
oriv., _ . <
E[£ (6°77; D)] Jnin L(0;D) < e /n

Here, rank(M) < n, but can be much smaller.

Remark 1. While the results above are stated for (¢,8)-LDP, they can easily be extended to e-LDP (with the same
asymptotics), albeit using a different randomization method from [10)].

D.1 Related Work on Choosing Optimal Clipping Norm

In this work, we show that an optimal choice of the clipping norm in DP-GD is necessary for attaining reasonable
excess empirical risk. Choosing the clipping norm “too low” introduces bias by changing the underlying objective,
whereas setting it “too high” introduces variance in the model estimate by increasing the noise level. There has been
both theoretical [[18} 7,26} 41} 4] and empirical research [40, 33| providing algorithms which can be used for choosing
a “near-optimal” value of the clipping norm. For instance, [40, [33]] track differentially private estimates of various
statistics, like the percentage of the individual gradients getting clipped, or the mean and variance of the noisy gradient
estimates across the training, and adaptively adjust the value of the clipping norm. The work in [3]] studies the bias-
variance trade-off on setting the clipping norm value; our work is tangential in that it provides risk bounds for any
value of the clipping norm. The algorithms in [[18, [7, 26} |41]] come in variety of flavors. One natural and powerful
approach [26] is to first compute the excess empirical risk attained by DP-SGD using a “potentially large” candidate
set of clipping norms. Then, choose the best clipping norm using a differentially private selection procedure. The
strength of this result is that the “cost of privacy” is almost independent of the number of possible clipping norms
tried.
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