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Abstract

End-to-end Automatic Speech Recognition (ASR)
models are commonly trained over spoken utter-
ances using optimization methods like Stochastic
Gradient Descent (SGD). In distributed settings
like Federated Learning, model training requires
transmission of gradients over a network. In this
work, we design the first method for revealing the
identity of the speaker of a training utterance with
access only to a gradient. We propose Hessian-
Free Gradients Matching, an input reconstruction
technique that operates without second deriva-
tives of the loss function (required in prior works),
which can be expensive to compute. We show
the effectiveness of our method using the Deep-
Speech model architecture, demonstrating that it
is possible to reveal the speaker’s identity with
34% top-1 accuracy (51% top-5 accuracy) on the
LibriSpeech dataset. Further, we study the ef-
fect of two well-known techniques, Differentially
Private SGD and Dropout, on the success of our
method. We show that a dropout rate of 0.2 can
reduce the speaker identity accuracy to 0% top-1
(0.5% top-5).

1. Introduction

End-to-end automatic speech recognition (ASR), which di-
rectly transcribes speech to text without predefined align-
ments, has increasingly been gaining popularity over con-
ventional pipeline frameworks. State-of-the-art ASR models
have achieved human parity in conversational speech recog-
nition (Xiong et al., 2017). Training such models often
requires a large amount of user-spoken utterances. In the
speech domain, training data includes audio and transcripts
of utterances, which can directly expose sensitive informa-
tion, or make it possible to leak attributes such as gender,
dialect, or identity of the speaker.
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In distributed frameworks such as Federated Learning (FL)
(McMahan & Ramage, 2017), model training is performed
via mobile devices with transmission of gradients over the
network, allowing training over large populations (Bonawitz
et al., 2019) while ensuring such data remains on-device.
Many works have shown the competitive performance of
FL-trained models on sequential modeling tasks like key-
board prediction (Hard et al., 2018) and keyword spotting
(Leroy et al., 2019; Hard et al., 2020), as well as in speech
recognition (Dimitriadis et al., 2020; Guliani et al., 2020).

A recent line of work (Zhu et al., 2019; Geiping et al., 2020;
Wei et al., 2020) has focused on demonstrating leakages of
information about training data, from the gradients used in
model training. At a high level, these works aim to recon-
struct training samples by designing optimization methods
for constructing objects that have a gradient matching to
the observed gradient. For instance, a number of existing
methods have been shown to successfully reconstruct im-
ages used for training image classification models. As we
discuss later (in Section 3.3), there are fundamental chal-
lenges, like variable-sized inputs/outputs, that render such
methods inapplicable in the speech domain.

In this work, we study information leakage from gradients
in ASR model training. In particular, we design a method
to reveal the speaker identity of a training utterance from a
model gradient computed using the utterance. Given that
ASR models can have training utterances and transcripts of
arbitrary lengths, for computational efficiency and to avoid
potential false positives, we assume that the transcript, and
the length of the training utterance are known. We start
by designing Hessian-Free Gradients Matching (HFGM), a
technique to reconstruct speech features used in computing
gradients for training ASR models. Our HFGM technique
eliminates the need of second-order derivatives (i.e., Hes-
sian) of the loss function, which were required in prior
works (Zhu et al., 2019; Geiping et al., 2020; Wei et al.,
2020), and can be expensive to compute. Next, our method
uses the reconstructed features and a speaker identification
model to uniquely identify the speaker from a list of speak-
ers by comparing speaker embeddings.

To our knowledge, this is the first method in the speech
domain that can be used for revealing information about
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training samples from gradients. We demonstrate the effi-
cacy of our method by conducting experiments using the
LibriSpeech data set (Panayotov et al., 2015) on the Deep-
Speech (Hannun et al., 2014) model architecture. We find
that our method is successful in revealing the speaker iden-
tity with 34% top-1 accuracy (51% top-5 accuracy) among
~2.5k speakers.

We also study the effect of two standard training techniques,
namely, Differentially Private Stochastic Gradient Descent
(DP-SGD) (Bassily et al., 2014; Abadi et al., 2016), and
Dropout (Srivastava et al., 2014), on the success of our
method. The technique of DP-SGD is the state-of-the-art
in training deep neural networks with Differential Privacy
(DP) (Dwork et al., 2006b;a) guarantees. Intuitively, DP
prevents an adversary from confidently making any conclu-
sions about whether any particular sample was used to train
a model, even while having access to the model and arbi-
trary external side information. While we demonstrate that
using DP-SGD can mitigate the success of our method, we
find (in line with prior works (Abadi et al., 2016; McMahan
et al., 2018; Thakkar et al., 2020)) that training large models
using DP-SGD can significantly affect model utility.

The well-known technique of Dropout (Hinton et al., 2012;
Srivastava et al., 2014), which randomly drops hidden units
of a neural network during training, is commonly employed
to avoid overfitting in large models. We show that using
dropout can reduce the speaker identity accuracy of our
method to 0% top-1 (0.5% top-5), without compromising
utility of the trained model.

‘We make the following contributions:

1. We design the first method to reveal speaker identity
of an utterance in ASR model training, with access
to only a gradient computed using the utterance. We
achieve this via Hessian-Free Gradients Matching, an
input reconstruction technique that operates without
needing second derivatives of the loss function.

2. We empirically demonstrate the effectiveness of our
method, using the DeepSpeech model architecture, in
revealing speaker identity with 34% top-1 accuracy
(51% top-5 accuracy) on the LibriSpeech data set. To
spur further research, we provide an open-source im-
plementation' of our experimental framework.

3. We study the effect of two standard training techniques
— DP-SGD and Dropout — on the success of our method.
We empirically demonstrate that using dropout can
reduce the success of our method to 0% top-1 (0.5%
top-5) accuracy.

'https://github.com/googleinterns/
deepspeech-reconstruction

We conclude by exploring the effectiveness of our method
in two complex regimes, where instead of access to indi-
vidual gradients, the method can access 1) only the average
gradient from a mini-batch of samples, and 2) the update
comprising multiple gradient descent steps using a training
sample. We demonstrate that in both of the above settings,
our method reveals speaker identity with non-trivial accu-
racy, whereas training with dropout is effective in reducing
its success.

2. Background

In this section, we start by revisiting the idea of Gradients
Matching (GM) (Zhu et al., 2019), which has been success-
fully applied to reconstruct images from gradients of an
image recognition model. We then introduce end-to-end
ASR models and a popular architecture using the Connec-
tionist Temporal Classification (CTC) loss (Graves et al.,
2006). We also provide some background on zeroth-order
optimization, specifically the direct search algorithm, and
speaker identification models with triplet loss, which form
critical components of our proposed method.

Gradients Matching & Deep Leakage from Gradients
(DLG) Algorithm DLG was introduced by Zhu et al.
(2019) as a method to reconstruct an input & and output
i given a model gradient V Ly (&, §), where £ denotes the
loss function and 6 denotes the model parameters (when it
is clear from the context that the gradient is w.r.t. model
parameters 6, we just denote it by V.L(-, -)). The algorithm
attempts to find an input-output pair (x,y) that matches
VL(z,y) with VL(Z,§). The general idea is also referred
to as Gradients Matching (GM). A dummy input = and a
dummy label y are fed into the model to get dummy gra-
dients VL(x,y). Reconstructed objects are obtained by
minimizing the Euclidean distance between the dummy gra-
dients and the client update.

¥, y* = argmin ||VL(z,y) — VE(:%,;I))HQ (D

T,y

Geiping et al. (2020) provide an extension of DLG that
works with larger images and trained models. They adopt
the cosine similarity (also shown in (4)) to optimize the
gradients distance, which only matches the direction of gra-
dients. A regularization term is also added. They assume
that the training labels are known and formulate the recon-
struction as finding x to minimize

 (VL(,5), VL))
VLG p)IVLG, 9)]

D(x,VL(Z,9)) =1 +aTV(x)

2)
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where T'V () and « are a regularization term (total variance)
and its weight in the loss, respectively.

Both first-order and second-order optimization methods can
be used to optimize (1) and (2). While first order techniques,
such as Stochastic Gradient Descent (SGD) and Adam op-
timizer are usually faster to compute, second-order meth-
ods like L-BFGS can escape slow convergence paths better
(Battiti, 1992). An observation about this function is the
presence of first-order derivatives VL(z, §), which requires
second-order differentiation with regards to x to compute
the gradients. These second-order gradients can usually be
derived with auto-differentiation commonly implemented
in deep learning frameworks.

End-to-end ASR with CTC loss Recently, end-to-end
models have achieved superior performance while being
simpler than traditional pipeline models (Graves et al., 2006;
Graves, 2012; Chorowski et al., 2014; 2015; Chan et al.,
2016; Xiong et al., 2017). Two major lines of end-to-end
ASR architectures are based on connectionist temporal clas-
sification (CTC) (Graves et al., 2006), and the attention-
based encoder-decoder mechanism (Chorowski et al., 2014).

We focus on models with CTC loss in this work. CTC mod-
els are able to align network inputs of length 7" with label
sequences of length S < T" without predefined alignments.
The set of labels L is extended with a blank label, denoted
as “@”, to form Ly = L U {@&}. The label sequence z can
be mapped with a one-to-many mapping P : LT — L3 to
CTC paths (Graves et al., 2006), for example, “aab” can
both be mapped to “a@@Fab@” or “Gaadabb”

A neural network F, usually including one or several bi-
directional RNNs to model frame dependencies, is used to
map a d-dimensional speech features x € R7*? to 0 =
F(z) € RT*IL=l, The probability of a CTC path 7 € P(1)
is defined as p(7|z) = H?:l 0t . The likelihood of a label
sequence y follows as the sum over probabilities of all CTC
paths:

plyle) = > p(xlx) 3)

TeP(l)

The model is optimized by maximizing the likelihood of
y, i.e. minimizing Lore = — Z(Ly) In p(y|z). During
inference, a greedy search or beam search is conducted to
find a sequence y that maximizes p(y|x)

Note that the number of terms in (3) grows exponentially
with the length of inputs. To optimize the loss, its value
and first-order derivatives are computed analytically with a
dynamic programming algorithm, namely the CTC forward-
backward algorithm (Graves et al., 2006).

Zeroth-order Optimization Zeroth-order optimization
is the process of minimizing an objective, given access to the

objective values at chosen inputs. The standard approach to
zeroth-order optimization is to estimate the gradients (Flax-
man et al., 2005). However, gradient estimation suffers from
high variance due to non-robust local minima or highly non-
smooth objectives (Golovin et al., 2019). A direct search
algorithm (also known as pattern search, derivative-free
search, or black-box search), which samples a vector v and
moves z to x + u, performs well in several settings, such as
reinforcement learning (Mania et al., 2018). Additionally,
a binary search on the step size, referred to as Gradient-
less Descent (Golovin et al., 2019) is proven to be fast for
high-dimensional zeroth-order optimization.

Speaker Identification with Triplet Loss Recent ap-
proaches (Snyder et al., 2018; Chung et al., 2018) formulate
speaker identification as learning speaker discriminative em-
beddings for an utterance. The embeddings are extracted
from variable-length acoustic segments via a deep neural
network. The multi-class cross entropy loss (Snyder et al.,
2017;2018) and the triplet loss (Zhang & Koishida, 2017; Li
etal., 2017; Chung et al., 2018) are two common approaches
to train the embeddings. In this work, we adopt the triplet
loss, which operates on pairs of embeddings, trying to min-
imize the distance of embeddings from the same speaker,
and maximize the distance with other negative samples.

3. A Method to Reveal Speaker Identity

In this section, we describe our method to reveal the speaker
identity of a training sample & given its model gradient
VL(#,7). Here, & € RT*4 denotes the input speech fea-
tures created from the training utterance, 7" is the length of
input, d is the dimension of the input speech features, ¢ is
the output label sequence, and £ denotes the training loss
function. We split our method into two phases: (1) Using
Hessian-Free Gradients Matching to reconstruct the input
speech features (reconstruction phase), and (2) Identify the
speaker from the reconstructed speech features (inference
phase). Figure 1 provides an illustration of our method.

3.1. Reconstruction Phase: Hessian-Free Gradients
Matching (HFGM)

Given access to a gradient VL(Z, §j), generally one would
like to find a pair of speech features and transcript (z, y)
such that VL(z,y) = VL(&, ). However, ASR models
are typically sequence-to-sequence models that can map
arbitrary length speech features (2) to arbitrary length tran-
scripts (7). With no additional information, the possible
values y can take is exponential in the label set size, search-
ing through which can incur a prohibitive computational
cost. Moreover, there can be many false positives, i.e.,
pairs (z',y') # (&,9) such that VL(2',y') = VL(Z,7).
To circumvent this issue and make our problem simpler,
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Geiping et al. (2020); Wei et al. (2020), we need to com-
pute the second-order derivatives of the loss function L.
The loss function that is of interest here is the CTC loss
which is commonly used in end-to-end ASR systems. How-
ever, computing the second derivative of CTC loss involves
backpropagating twice through a dynamic programming
algorithm which we found to be intractable.* To tackle
this challenge, and also address a broader family of loss
functions, we adopt a zeroth-order optimization algorithm.

@ Repeat to update x

Figure 1. An illustration of our method. (1) A gradient is accessible
to an attacker. (2) The attacker computes dummy gradients from a
dummy input x. (3) The attacker compares the gradient received
with dummy gradients and repeats to optimize x. (4) The attacker
reveals the identity of the speaker. Notations in red are known to
the attacker.

we assume 9, the transcript of the training utterance, is
given.” Even though ) is given, there could exist multi-
ple length speech features 2, where |z’| # T, such that
VL(z',§) = VL(Z,§). Thus, we also assume 7 is given.
Note that even if the transcript and the length of the input
speech features are known, revealing the identity of the
speaker can still result in a significant breach of privacy. De-
signing efficient reconstruction methods that operate with-
out these assumptions is an interesting direction, which we
leave for future work.>

Now, we define the reconstruction task as constructing an
r € RT*4 guch that VL(z,7) is close to the observed
gradient VL(&, 7). Following (Geiping et al., 2020), we
choose cosine distance as our measure of closeness, and
formulate our optimization problem to find z* s.t.:

x* = argminD (z, VL(Z, 7)), where

(VL(2,9), VL(E, §))

D(z,VL(E,§)) =1— VL, DIVLE, D))

“4)

To solve this non-convex optimization problem using
gradient-based methods as in prior work Zhu et al. (2019);

Note that the transcript could be a common phrase, e.g., “play
music”. Our objective is to identify the speaker of an utterance
regardless of the contents of its transcript.

3Using the experimental setup in Section 4, we provide some
preliminary results in Appendix B.1 on reconstruction i) without
the knowledge of length of input speech features, and ii) with
the knowledge of only the transcript length. We find that while
reconstruction can succeed even with a good estimate of the input
length, it fails with no knowledge of the transcript.

Algorithm 1 Hessian-Free Gradients Matching

Input: Gradients to match VL(Z, §), gradients distance
function D(z, VL(%,§)), learning rate «, transcript §
and length of speech features 7T'. Parameters: number of
samplings k, number of iterations [N
Initialize » € RT*4,
forn =1to N do
Vo
Sample k unit vectors vy, ..., v, € RT*¢
for k =1to K do
if D(z + avg, VL(Z,9)) < D(x, VL(E,y)) then
Add v, to V
end if
end for
TiTta)y, v
end for

We use a direct search approach (Section 2) called HFGM
(Algorithm 1). We initialize = with uniformly random val-
ues. At each iteration, we sample k random unit vectors and
apply them to x. The value D is evaluated at each of these k
points. We choose only the vectors that lower D, sum these
up and apply the sum with a learning rate . We repeat the
process until we reach the convergence criteria.

3.2. Inference Phase: Revealing Speaker Identity

In the second part of our method, we use the reconstructed
speech features (z*) to identify the speaker of the utterance
from a list of possible speakers.

We train a speaker identification model that uses the same
speech features as our ASR model on some corpus. We
assume that we have access to some public utterances for
each possible speaker to identify them. We use the speaker
identification model to create embeddings for each speaker
from the public utterances. We take the reconstructed speech
features (z*), create an embedding using the speaker iden-
tification model, and compare it with embeddings for each
speaker. If the method is successful, the embedding created
from z* is closer to the embedding for the speaker of the

4 Additionally, the second derivatives of CTC loss are not im-
plemented in common deep learning frameworks like Tensor-
Flow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019).
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utterance than the other speakers.

3.3. Comparison with Related Prior Works

Our work differs from the related prior works (Zhu et al.,
2019; Geiping et al., 2020; Wei et al., 2020) in a few ways.

Input features: The input to ASR models is typically not
the raw audio but speech features which are computed from
the raw audio using a series of lossy transformations. In
image recognition models, the input to the model is typically
the raw pixel values. While prior works on image recog-
nition models demonstrate breach of privacy by directly
reconstructing the input to the model, we incorporate an
additional inference phase where we use the reconstructed
input to reveal the identity of the speaker.

Variable-sized inputs and outputs: We focus on ASR
models, which have variable-sized inputs and outputs; im-
age recognition models have fixed size inputs and outputs.

CTC Loss: The models we focus on use CTC loss instead
of cross-entropy loss. CTC loss is significantly more com-
plex, requiring a dynamic programming algorithm to com-
pute the value of the loss function and derivatives.

4. Experiments

In this section, we provide empirical results on the effective-
ness of our method. We start by describing our setup.

Model Architectures Following prior work (Carlini &
Wagner, 2018), we choose the DeepSpeech (Hannun et al.,
2014) model architecture for our experiments. The model
consists of three feed-forward layers, followed by a single bi-
directional LSTM layer, and two feed-forward layers to pro-
duce softmax probabilities for the CTC loss. DeepSpeech
uses character-based CTC loss: the output is a sequence of
characters. The input is a 26-dimensional mel-frequency
cepstrum coefficients (MFCCs) feature. MFCCs are a pop-
ular speech feature, derived by mapping the power of the
result of a Fourier transform to the mel scale, then per-
forming a discrete cosine transformation. We use Mozilla’s
implementation of DeepSpeech’

We conduct our experiments using randomly initialized
weights for the model. For the inference phase, we follow
Li et al. (2017) to train a text-independent speaker identifi-
cation model on 26-dim normalized MFCCs, similar to the
speech feature used for inputs to DeepSpeech.

Dataset We choose the LibriSpeech ASR corpus (Panay-
otov et al., 2015), a large-scale benchmark speech dataset
for our experiments. The dataset contains pairs of audio and
transcript, along with speaker attributes such as gender and

5https ://github.com/mozilla/DeepSpeech

identity. For training the speaker identification model, we
first combine all the dev-{clean/other}, test-{clean/other},
train-{clean-100/clean-360/other-500} sets to obtain 300k
utterances from 2,484 speakers, and use the first 5 utterances
of each speaker for training.

For the reconstruction phase, we trim the leading and ending
silences, based on the intensity of every 10ms chunk, from
each utterance in the remaining combined test set. Next, we
randomly sample a total of 600 utterances, 100 for each in-
terval of audio length in {[1, 1.5s), [1.5,2s), ..., [3.5,45s)}.
The average audio length in our sampled set is 2.5 sec-
onds, and average transcript length is 40.6 characters. The
male:female ratio in the sampled utterances is 1.1:1.

Implementation Details In this section, all the experi-
ments consider the scenario of revealing speaker identity
from a single gradient computed using a single utterance.
For computational efficiency, we match gradients only for
the last layer (~60k parameters). Note that matching lower
layers may increase the reconstruction quality.

Each dummy input in our reconstruction is initialized with
uniformly random values in [—1, 1]. When performing di-
rect search, we sample 128 unit vectors per iteration, each
of which only updates a single frame. We set the step size
to 1, and reduce by half after every 2.5k iterations s.t. the
loss does not decrease by more than 5%. We stop the re-
construction when the step size reaches 0.125. We run each
reconstruction on a single Tesla V100 GPU. The reconstruc-
tion time depends on the length of inputs, ranging from 3 to
6 hours.

Evaluation Metrics To evaluate our reconstruction, we
use the Mean Absolute Error (MAE) to measure the distance
of normalized MFCCs to those of the original utterance.
During inference, the similarity scores of a reconstructed
object’s embedding with each of 5 available utterances’
embeddings in the training data are averaged and ranked
to identify the speaker. We use Top-1 Accuracy, Top-5
Accuracy and Mean Reciprocal Rank (MRR) to evaluate the
speaker identity leakage. In experiments where we try to
use alternate training methods, the Word Error Rate (WER)
is used to evaluate the quality of trained ASR models®.

4.1. Empirical Results

Now, we present the results of using our method from Sec-
tion 3 to reveal speaker identity from 600 individual gra-
dients, each gradient computed using a unique utterance
from our sampled set. In Figure 2, we plot the results by
audio length in intervals of 0.5s from 1-4s. First, we show
the average MAE of the reconstructed MFCCs, where we

8 An N-gram language model is trained separately on a large
text corpus and used during inference.
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Figure 2. MAE and speaker identification accuracy on 600 utterances reconstructed using the actual gradient, and using DP-SGD at
different noise levels for training. We also provide the respective accuracy for the original utterances. For short utterances, speaker
identification on our reconstructions from the actual gradients almost matches that from the original utterances. For ¢ = 107, the top-1

accuracy reduces to ~0%.

observe that the average MAE monotonously increases with
the audio length. Note that the dimensionality of the opti-
mization problem increases linearly with the audio length.
Next, we plot the top-1 and top-5 accuracy of the speaker
identity from the reconstructed MFCCs. Notice that even for
the longest 3.5-4s utterances under consideration, the top-1
accuracy is 24%, and the top-5 accuracy is 37%. For compar-
ison, we also plot the performance of our speaker identifica-
tion model on the original utterances. For shorter utterances,
the top-1 accuracy from the reconstructed MFCCs is almost
identical to that from the original utterances.

Table 1 shows the overall values of the average MAE, Top-1
accuracy, Top-5 accuracy, and MRR of speaker identifi-
cation results from the original and reconstructed speech
features. We see that while speaker identification from orig-
inal utterances results in 42% top-1 (57% top-5) accuracy,
the same from the reconstructed features is 34% top-1 (51%
top-5), providing 81% (89.5%) relative performance.

Table 1. MAE, Top-1 Accuracy, Top-5 Accuracy, and MRR of
speaker identification on 600 utterances. The top-1 (top-5) ac-
curacy of speaker identification on reconstructed features is 81%
(89.5%) relative to that on original utterances.

added to provide a (local) DP guarantee for each sample.
Due to space constraints, we defer the formal definition of
Differential Privacy (DP) (Dwork et al., 2006b;a), and a
pseudo-code of DP-SGD, to Appendix A.3.

Using only Ls-clipping has been shown in prior works (Car-
lini et al., 2019; Thakkar et al., 2020) to be effective in
mitigating unintended memorization in language models.
However, the optimization in our method (Equation 4) uses
cosine distance as the loss, thus rendering only L-clipping
ineffective. Since using DP-SGD for training large mod-
els has been shown (Abadi et al., 2016; McMahan et al.,
2018; Thakkar et al., 2020) to affect model utility, our
first objective is to find the least o s.t. the top-1 accuracy
of speaker identification is ~ 0%. For our experiments,
we set C' = 1007, and provide the evaluation metrics for
o € {1074,5 x 104,103} in Figure 2. We observe that
o > 1073 is effective in reducing the top-1 accuracy of
speaker identification to ~ 0%.

Table 2. MAE and Speaker identification from reconstruction when
using DP-SGD at different noise levels. The noise needed (10~%)
to get ~0% top-1 accuracy almost doubles the final model’s WER.

MAE Top-1 Topr-5 MRR
ORIGINAL 0.00 42.0 57.0 0.554 WER WER
RECONSTRUCTED (.25 34.0 51.0 0.419 o MAE Top-1 Top-5 MRR (CLEAN) (OTHER)
BASELINE 0.25 34.0 51.0 0.419 10.5 28.4
. . 1074 0.34 21.5 34.8 0.284 14.9 37.6
4.2. Training with DP-SGD 5x107% 054 23 58 0.049 154  39.4
1073 0.63 0.5 1.7 0.021 19.6 453

Now, we study the effect of training with the popular tech-
nique of Differentially Private Stochastic Gradient Descent
(DP-SGD) on the success of our method. At a high-level,
each gradient gets clipped to a fixed Ly-norm bound C,
and zero-mean Gaussian noise of standard deviation oC' is

"We observed gradients had norm at least 100, and thus chose
C = 100. Due to cosine loss used in our optimization, as long as
a gradient gets clipped, the value of C' will not have any effect on
the success of the method, or on the DP guarantee via DP-SGD.
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We also provide the overall evaluation metrics with using
DP-SGD in Table 2. We see that for o = 1073, the top-1
accuracy of speaker identification is 0.5%. Further, we also
provide the WER of models trained using DP-SGD (Google,
2019) with a batch size of 16. We see that the WER of
models trained via DP-SGD, even for the smallest noise
level, is significantly increased compared to our baseline
training. Note that for the levels of noise presented here, the
bounds for (local/central) DP will be near-vacuous. How-
ever, improving the privacy-utility trade-offs for DP-SGD is
beyond the scope of this work.

4.3. Training with Dropout

Dropout (Srivastava et al., 2014) has been adopted in train-
ing deep neural networks as an efficient way to prevent
overfitting to the training data. The key idea of unit dropout
is to randomly drop model units during training. While prior
work (Wei et al., 2020) has mentioned dropout in the context
of information leakage from gradients, it does not provide
any empirical evidence of the effect of training with dropout
on such leakages.

The dropout mask is deducible from gradients if dropping
a unit completely disables a part of the network (e.g. a
feed-forward neural network), or dropout is applied directly
on weights (Wan et al., 2013). When parameters are shared
in the network, for e.g., a fully-connected layer operating
frame-wise on a sequence of speech features, each part of
the output typically uses an i.i.d. random dropout mask,
making it difficult to infer dropout masks from a gradient.

Table 3. MAE, Top-1, Top-5, and MRR of speaker identification
when reconstructed from dropped-out gradients. Even a dropout
rate of 0.1 efficiently prevents the leakage.

WER WER
d MAE Topr-1 Top-5 MRR (CLEAN) (OTHER)
0 0.25 340 51.0 0.419 10.5 28.4
0.1 0.59 0.8 2.0 0.019 11.9 28.2
0.2 0.72 0.0 0.5 0.006 9.2 25.6
0.3 0.81 0.1 0.3  0.005 9.5 27.1

Table 3 shows reconstruction quality and training error rates
for different dropout rates. Even for the lowest dropout rate
of 0.1, we see that the top-1 accuracy of speaker identifica-
tion is ~0%. At the same time, we observe that for models
trained with dropout, the WER is comparable (or sometimes
even lower) than the baseline training. We defer the plots of
the results grouped by audio length to Appendix B.

Visualizing Reconstructed Features In Figure 3, we pro-
vide two examples of spectrograms from the reconstruction
of a short and a long utterance. For the long utterance, even
though MAE for the reconstruction is high and the speaker

identification system fails to identify the speaker, the recon-
structed audio pattern is visibly similar to the original audio
pattern. For comparison, we also provide spectrograms
from reconstructions of the same utterances from DP-SGD
training (¢ = 5 x 10™%), and a dropout rate of 0.1.

5. Additional Experiments

The experiments in Section 4 focused on revealing speaker
identity using our method on a single gradient from a single
utterance. In distributed settings like FL, model training is
performed under more complex settings. In this section, we
conduct experiments to evaluate the success of our method
on two natural extensions of the setting in Section 4: 1) gra-
dients from a batch of utterances are averaged before being
shared, and 2) multiple update steps are performed using a
single utterance, and the final model update is shared. We
demonstrate that in both of the settings above, our method
can reveal speaker identity with non-trivial accuracy. Fur-
ther, we show that using dropout for training reduces the
limited success of the method in both the settings. All the
experiments in this section are conducted using the 200 utter-
ances of audio length 1-2s (from the 600 sampled utterances
for experiments in Section 4).

5.1. Averaged Gradients from Batches

In this section, we study the performance of our method
for revealing speaker identities from an averaged gradient
computed using a batch of utterances. In the reconstruction
phrase, our objective function (4) does not change; however,
we instead try to reconstruct (z; : 2 ), where z; € RTi*4
for i € [B]. Here, B is the number of samples in the batch,
and T; is the length of input ¢ € [B]. For computational
efficiency, we only update a single sample per iteration of
our optimization. We provide a pseudo-code for the variant
of Algorithm 1 adapted to this setting, in Appendix C.1.

We conduct our experiments for batch sizes in {2, 4, 8}.
For each batch size, the 200 utterances are sorted by audio
length, and grouped into batches. We provide the results
in Table 4, comparing them with the results (batch size 1)
on same 200 utterances in Section 4.1. We see that while
speaker identification accuracy decreases with increasing
batch sizes, the top-1 accuracy is still as high as 19% for
batch size 4. An experiment on the effect of training with a
dropout rate of 0.1 shows that reconstruction of batch size
2 from dropped-out gradients reduces the accuracy to 1%
top-1 (4% top-5), compared to 2% top-1 (4% top-5) on the
same set of utterances in Section 4.3.

5.2. Multi-Step Updates from a Sample

Now, we study the success of our method in revealing
speaker identities from an update comprising of multiple
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Original Reconstructed

DP-SGD 0=5x 10~* Dropout 0.1

Figure 3. Spectrograms obtained from the original and reconstructed MFCCs, as well as training with DP-SGD o = 5 x 10™*, and
dropout rate 0.1. The utterance in the first row is “where is my husband” (length: 1.4s, MAE of Reconstructed: 0.09, speaker identified
correctly). The utterance in the second row is “i’ll give it to you this time but the next time you want anything you can go below for it”
(Iength: 4.0s, MAE of Reconstructed: 0.31, speaker identified incorrectly). Even though the latter has a bad reconstruction quality, its
spectrogram for the reconstructed features is visibly similar to that of the original. For reconstructions on training using DP-SGD, and

Dropout, we see that reconstruction quality deteriorates.

Table 4. Reconstruction MAE, Top-1 and Top-5 Speaker identifica-
tion accuracy from averaged gradients of a batch. Even with batch
size 4, our method is successful with a top-1 accuracy of 19%.

MAE Top-1 Top-5 MRR
ORIGINAL 0.00 42.0 57.0 0.490
BATCH SIZE 1 0.14 40.0 55.0 0.470
BATCH SIZE2  0.21 37.0 54.0 0.451
BATCH sizE4  0.37 19.0 31.0 0.249
BATCH SIZE8  0.48 5.0 11.0 0.084

update steps using a single utterance. We conduct our ex-
periments for 2-step and 8-step updates with the learning
rate set to 10~°. For computational efficiency, we reduce
the number of unit vectors sampled to 8 (as opposed to 128,
in the experiments in Sections 4 and 5.1) in each iteration
of our zeroth-order optimization.

Table 5 shows the results of our experiment, comparing
them with the same (1-step) from Section 4.1. Since the
optimization for multi-step reconstruction is different, the
results are not directly comparable with those of single-step
setting. We see that even though the time/computation taken
for reconstruction may increase with increasing number of
steps, the success of our method in revealing speaker identity
is still as high as 24% top-1 accuracy for 8-step updates.
Using dropout in training is still effective: a dropout rate of
0.1 reduces the accuracy to 2% top-1 (3.5% top-5).

6. Related Work

While we provide a background (in Section 2) for the DLG
method (Zhu et al., 2019) and a comparison with our method
(in Section 3.3), there have been follow-up works (Geiping
et al., 2020; Wei et al., 2020; Zhao et al., 2020) showing
high-fidelity image and label reconstruction from gradients
under different settings. Revealing information about train-

Table 5. Reconstruction MAE, Top-1 and Top-5 Speaker identi-
fication accuracy from multi-step updates from a single sample.
We see that increasing the number of steps from 2 to 8 does not
significantly affect the quality of the reconstruction

MAE Top-1 Topr-5 MRR
ORIGINAL  0.00 42.0 57.0 0.490
1-STEP 0.14 40.0 55.0 0.470
2-STEP 0.33 26.5 39.5 0.333
8-STEP 0.33 24.5 39.0 0.321

ing data from gradients has also been shown via member-
ship and property leakage (Shokri et al., 2017; Song &
Shmatikov, 2019; Melis et al., 2019). There is a growing
line of works on revealing information from trained models.
For instance, (Fredrikson et al., 2015) demonstrate vulner-
abilities to model inversion attacks. Other works (Carlini
et al., 2019; Thakkar et al., 2020) show the amount of unin-
tended memorization in trained models, along with studying
the effect of DP-SGD in mitigating such memorization.

For using standard training techniques to reduce information
leakages from model training, while gradient compression
and sparsification have been claimed (Zhu et al., 2019) to
provide protection, it has been shown in (Wei et al., 2020)
that reconstruction attacks can succeed with non-trivial ac-
curacy in spite of using gradient compression. There also
exist works on designing strategies that require changes to
the model inputs or architecture for protection, e.g., Tex-
tHide (Huang et al., 2020a), and InstaHide (Huang et al.,
2020b). For real-world deployments of distributed training,
there also exist protocols like Secure Aggregation (Bonawitz
et al., 2017) which make it difficult for any adversary to ac-
cess raw individual gradients.
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A. Background
A.1. DeepSpeech

We hereby present details about the DeepSpeech (Hannun
et al., 2014) model. The model consists of three feed-
forward layers, followed by a single bi-directional LSTM
layer, and two feed-forward layers to produce softmax prob-
abilities for the CTC loss. The list of layers and number of
parameters at each layer are shown in Table 6. Note that we
only use the last layer to match gradients, which has only
~ 0.1 M parameters.

Table 6. Number of parameters at each layer of DeepSpeech. Note
that we only match the last layer (Layer 6) during the reconstruc-
tion.

LAYER TYPE NO. PARAMETERS
1 FEED-FORWARD 1.0Mm
2 FEED-FORWARD 4.2M
3 FEED-FORWARD 4.2M
4 BI-DIRECTIONAL LSTM 33.6M
5 FEED-FORWARD 4.2M
6 FEED-FORWARD 0.1M
TOTAL 47.3m
A.2. Deep Speaker

The Deep Speaker (Li et al., 2017) model adopts a deep
residual CNN (ResCNN) architecture to extract the acous-
tic features from utterances. These per-frame features are
averaged to produce utterance-level speaker embeddings.
The ResCNN consists of four stacked residual blocks (Res-
Blocks) with a stride 2. The numbers of CNN filters are 64,
128, 256, 512, respectively. The total number of parameters
is 24M.

Deep Speaker is trained with Triplet Loss, which takes three
samples as input, an anchor a, a positive sample p (from
the same speaker), and a negative sample n (from another
speaker). The loss function of /N samplings is defined as

N
L= ZmaX(O, s — s 4+ @)
i=0

where s¢" is the cosine similarity between the anchor a;
and the negative sample n;, s;” is the cosine similarity
between the anchor a; and the positive sample p;, from the
i-th sampling. « is the minimum margin between these

cosine similarities, which is set to 0.1.

A.3. DP-SGD

For completeness, we start by providing a definition of the
notion of Differential Privacy (Dwork et al., 2006b;a). We
will refer to a pair of datasets X, X’ as neighbors if X’ can
be obtained by the addition or removal of one sample from
X.

Definition A.1 (Differential privacy (Dwork et al., 2006b;a))

A randomized algorithm A is (e, §)-differentially private if,
for any pair of neighboring datasets X and X', and for all
events S in the output range of A, we have

PrlA(X) e §] <e-PrlA(X') e S|+ 46

where the probability is taken over the random coins of A.
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Now, we provide a pseudo-code for DP-SGD (Abadi et al.,
2016).

Algorithm 2 Differentially Private SGD

Require: Dataset X of size n, Loss function £(6), Param-
eters: Mini-batch size B, Learning rate 7, Clip norm
bound C, Per-sample noise scale o, Total number of
iterations 7'

1: Initialize model with 6y randomly

: fort € [1,T] do

Sample a random minibatch B, C X, by indepen-

dently including each element of X with probability

B/n

4. forz; € By do

Compute gradient g;(x;) = VoL(0, x;)

6: Clip each gradient in {3 norm to C, i.e., gi(z;) =
ge(;)/ max(1, lolz)lz )
7: Add noise g;(z;) = gi(z;) + N(0,5%C?I)
8: end for
9: Compute average
PO ACN

10:  Update model 6; = 6,1 — - g,

11: end for

12: Compute privacy cost using Moments Accountant.

W N

el

noised gradient g =

B. Additional Experiments, and Omitted
Details

B.1. Reconstruction without Assumptions

We set up two experiments to explore the necessity of the
two assumptions of known input length and transcript for
our reconstruction method.

Reconstruction without Knowledge of Input Length
The first assumption for our reconstruction method (Sec-
tion 3.1) that the length of input speech features is known.
This is required to set up the search space for the optimiza-
tion problem (4). Without the exact input length, we show
that reconstruction is still possible. In the experiments be-
low, 20 random utterances are chosen from the 1-2s bucket
whose speaker are correctly identified in top-5 in section 4.1.
The average length of these utterances is 74.35 frames (~
1.5s). Table 7 shows reconstruction results when estimated
lengths differ by £1,+5, and £10 compared to original
lengths and are double / half of the original lengths. It can
be seen that the speaker identity can still be revealed even
with a good estimate of the input length. For the same
amount of absolute deviation in the estimation (e.g., +5
and —b), we see that the higher estimation provides better
results.

Table 7. Loss (gradients’ distance) and speaker identification re-
sults with different input lengths on 20 random short utterances
correctly identified top-5 speaker in section 4.1. We see that our
method succeeds even with good estimates of the input length.

LENGTH Loss (x107%) Top-1 Top-5 MRR
ORIGINAL 0.04 90 100 0.748
+1 0.06 60 90  0.706
-1 0.05 55 95  0.714
+5 0.20 50 80  0.632
-5 0.31 45 70 0.580
+10 0.44 35 55 0.442
—10 1.43 20 40  0.301
X2 2.53 0 10 0.048
/2 145.15 0 0 0.003

Reconstruction without Contents of the Transcript
Next, we conduct experiments with our method having
knowledge of only the length of the transcript, not its con-
tents. For each utterance in the set of 20 utterances from
section B.1, we generate 4 random transcripts and use them
to reconstruct speech features. It can be seen from Table 8
that reconstruction is constantly of a poor quality (high loss)
with a random transcript, suggesting that the knowledge
about the transcript is important. The bad quality of recon-
structed features from an incorrect transcript also suggests
that if the attacker has a list of candidates for the transcript
(e.g., common phrases, song names, etc.) including the
original one, a brute-force approach to pick the one with
the lowest loss can reveal the actual transcript with high
confidence.

Table 8. Loss and speaker identification results when reconstruct-
ing from random transcripts of the same length as the original.
Reconstruction is constantly of a poor quality with a random tran-
script.

TRANSCRIPT Loss (x107%) MAE Top-1 Top-5 MRR

ORIGINAL 0.04 0.12 90 100

RANDOM 1 79.5 0.78 0 0 0.010
RANDOM 2 135.5 0.74 0 0 0.013
RANDOM 3 108.7 0.77 0 0 0.006
RANDOM 4 101.5 0.78 0 0 0.015

B.2. Reconstruction from Dropped-Out Gradients

Figure 4 show results grouped by audio length of the experi-
ment in Section 4.3. Even a dropout rate of 0.1 efficiently
eliminates the risk of speaker identity leakage.

We also try varying the dropout rate and performing recon-
struction on a small population of 20 utterances (first 20
utterances when sorted by lengths). The results are pre-
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Figure 4. MAE and speaker identification accuracy when reconstructed from dropped-out gradients. Even a dropout rate of 0.1 efficiently

reduces the speaker identification accuracy to 0.

sented in Figure 5. The speaker identification accuracy
drops sharply when increasing the dropout rate.

C. Algorithms

We present an adapted version of HFGM for reconstructing
from averaged gradients and multi-step updates.

C.1. HFGM on Averaged Gradients from Batches

In Algorithm 1, a dummy input is randomly initialized at
the beginning and given to the model to compute the loss
and gradients at every iteration of the optimization process.
When reconstructing a batch from averaged gradients, a
dummy batch needs to be optimized. To save computa-
tion time, we only update a single sample at each iteration,
reusing the loss and gradients of other samples in the batch
to obtain the overall loss and gradients. A variant of Algo-
rithm 1 adapted for this setting is presented as Algorithm
3

C.2. HFGM on Multi-Step Updates from a Sample

A challenge when applying Algorithm 1 to this setting is the
change in model parameters after each local step. Therefore,
model updates of sampled unit vectors cannot be computed
in batch, but need to be computed separately. The model
also needs to be reset to its original parameters before each
computation. Algorithm 4 provides a modified version of
Algorithm 1 to reconstruct an input from multi-step updates.
For efficiency, if K vectors are sampled at each iteration, K
separate versions of the model are stored in the computation
graph and processed in parallel.

D. Additional Visualizations

Figure 6 shows the spectrogram of some utterances recon-
structed in Section 4.1, along with results when reconstruct-
ing from a gradient with DP-SGD and Dropout.

Algorithm 3 HFGM on averaged gradients from batches

Input: Gradients to match V£ (&, ), gradients distance
function D(z, VL(Z,9)), learning rate «, transcript ¢,
length of speech features {7;}2 ;. Parameters: number
of samplings K, number of iterations IV, batch size B
Initialize {z;}2 |, z; € RT:x4,
L; + E(xi, 2}1) fori € [B]
forn =1to N do
Vo
Sample b € [B]
Sample K column unit vectors vy, ..., vg € RT:*4
for k =1to K do
' —{x1,...,zp + aug,....,cB}
ﬁ(l‘/, f&) < % (Zi;&b L; + ['(xb + v, ?jb))
VL@, 5) & (S VL + VL@, + 04, 10))
if D(z', L(Z,9)) < D(x, VL(Z,7)) then
Addv;toV
end if
end for
Tp = Tp+ QY ¥
Eb — E(.’L‘b, ?jb)
VL, « VL(xy, )
end for

We also plot per-frame MAEs at different stages in the
optimization process in Figure 7. In long utterances, re-
constructions usually have bad quality with frames in the
middle being poorly reconstructed. This suggests that the
error from earlier frames may have affected reconstruction
in the middle part, due to sequential dependencies modeled
in the LSTM.
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Figure 5. MAE and speaker identification accuracy when dropout rate changes from 0.00 to 0.10. Each point is averaged from 20 short
utterances. Speaker identification accuracy drops sharply when increasing the dropout rate.

Algorithm 4 HFGM on multi-step updates from a sample
Input: Parameter changes to match A#, gradients dis-
tance function D(x, Af), learning rate c, transcript §
and length of speech features T'. Parameters: number of
samplings K, number of iterations /N, number of steps
C, local learning rate .

Initialize x € RT*9,
forn =1to N do
Vo
Sample K unit vectors vy, ..., v €
for k =1to K do
Reset 6y
forc=1to C do
Oc 01 — VL, (z+ avg, )
Compute Lg_(x + avg, §) and VLy_(x + avg, §)
end for
if D(z + avg, Af) < D(z, Ab) then
Add v, to V
end if
end for
T Tta) v
end for

RTXd
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Reconstructed DP-SGD 0=5x 1073 Dropout 0.1

Original

resign

your friend as ever

and he who says in
projection

she looked at me
relentingly and said

that we shall not
describe them here

take a mass of
carrion for
example

he gave the
discussion up with
a slight shrug of
the shoulders

but this tone of
personal aggression
on the maker of the
remark

when going deer
hunting to meet
a red haired man

Figure 6. More spectrograms from reconstructions in Section 4.1. From left to right: Original, Reconstructed, DP-SGD with ¢ = 5x 1074,
Dropout 0.1
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Figure 7. Per-frame MAE:s of reconstructed MFCC:s at different stages of the optimization. x-axis is the frame number and y-axis is the
per-frame MAE. Darker lines mean more iterations have been run. The most blurred red line is the initial state and the blue line is the final
result. For long utterances, frames at two ends are reconstructed better than those in the middle



