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Abstract

In this paper, we revisit the problem of using public data to improve the privacy/utility trade-offs for differentially
private (DP) model training. Here, public data refers to auxiliary data sets that have no privacy concerns. We consider
public training data sets that are from the same distribution as the private training data.

For convex losses, we show that a variant of Mirror Descent provides population risk guarantees which are in-
dependent of the dimension of the model (p). Specifically, we apply Mirror Descent with the loss generated by the
public data as the mirror map, and using DP gradients of the loss generated by the private (sensitive) data. To obtain
dimension independence, we require G2

Q ≤ p public data samples, where GQ is the Gaussian width of the smallest
convex set Q such that the public loss functions are 1-strongly convex with respect to ‖ · ‖Q. We further show that
our algorithm has a natural “noise stability” property: If in a bounded region around the current iterate, the public
loss satisfies αv-strong convexity in a direction v, then using noisy gradients instead of the exact gradients shifts our
next iterate in the direction v by an amount proportional to 1/αv (in contrast with DP stochastic gradient descent
(DP-SGD), where the shift is isotropic). Analogous results in prior works had to explicitly learn the geometry using
the public data in the form of preconditioner matrices. Our method is also applicable to non-convex losses, as it does
not rely on convexity assumptions to ensure DP guarantees.

We demonstrate the empirical efficacy of our algorithm by showing privacy/utility trade-offs on linear regression,
deep learning benchmark datasets (WikiText-2, CIFAR-10, and EMNIST), and in federated learning (StackOverflow).
We show that our algorithm not only significantly improves over traditional DP-SGD and DP-FedAvg, which do not
have access to public data, but also improves over DP-SGD and DP-FedAvg on models that have been pre-trained
with the public data to begin with.

1 Introduction
Differentially Private Stochastic Gradient Descent (DP-SGD) [1, 6, 38], and its variants [24] have become the de
facto standard algorithms for training machine learning models with differential privacy (DP) [18]. While DP-SGD is
known to be optimal in terms of obtaining both optimal excess empirical risk [6], and excess population risk [11] for
convex losses, the obtained error guarantees suffer from an explicit polynomial dependence on the model dimension
(p). This polynomial dependence significantly impacts the privacy/utility trade-off when p ≥ npriv, where npriv is
the number of private training samples. Thus, even empirically, when DP-SGD is used to train large deep learning
models, there is a significant drop in accuracy compared to the non-private counterpart [37]. In this paper, we revisit
the problem of effectively using public data (i.e., data drawn from the same distribution as the private training data set,
but without privacy concerns) to improve the privacy/utility trade-offs for DP model training. Specifically, we design
a central and federated DP variant of mirror descent [33] that uses the loss function generated by the public data as
the mirror map and DP gradients on the private/sensitive data as the linear term, ensuring population risk guarantees
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for convex losses with no explicit dependence on dimensions as long as npub ≥ p, where npub is the number of records
in the public data set.

We show both theoretically and empirically that our DP variant of mirror descent, assisted with public data, can
improve the privacy-utility trade-offs by effectively reducing the variance in the noise added to the gradients in DP
model training. Our empirical results are on standard benchmark data sets like CIFAR-10, EMNIST, and WikiText-2.
Learning Geometry with Mirror Maps: Common to most DP model training algorithms, including DP-SGD, DP-
FTRL [24], and our algorithm, is a DP estimator of the gradient of the loss ∇θL(θt;Dpriv) =

∑
d∈Dpriv

∇θ`(θt; d)
generated by the private data set Dpriv at a given model state θt ∈ Rp. This DP estimator essentially adds isotropic
Gaussian noise N (0, σ2Ip) to ∇θL(θt;Dpriv), where σ depends on the privacy parameters (ε, δ) and the maximum
allowable value of ‖∇θ`(θt; d)‖2 (a.k.a. the clipping norm [1]).1 It is well known that for most learning tasks, the
set of gradient vectors for L(θt;Dpriv) is seldom isotropic [2, 20]. Hence, it is natural to wonder if the Gaussian
noise in the DP estimator can be made to respect the geometry of the gradients. Prior works [4, 23, 44] have used
public data (Dpub) to explicitly learn this geometry, mostly in the form of preconditioner matrices [15] to be multiplied
to the estimated noisy gradients. In this paper, we take an implicit approach towards respecting this geometry, by
using the loss L(θ;Dpub) generated by the public data as the mirror map in classical mirror descent. As a first order
approximation (formalized in Section 4), one can view it as doing DP-SGD on L(θ;Dpriv) while using L(θ;Dpub)
as a regularizer. This approach has the following advantages: (i) The information of the geometry is “free”, i.e., one
does not need to learn the preconditioner explicitly from the public data, (ii) Unlike prior works [23, 44], one does not
need to assume that the gradients of L(θ;Dpriv) lie in a fixed rank subspace, (iii) The achieved excess population risk
guarantees have better dependence on npub = |Dpub| compared to prior results [4], and (iv) Because the geometry is
implicitly defined, the implementation does not need to maintain an additional data structure for the preconditioner, and
hence is much easier to implement. Empirically, under our best-effort comparison, our baseline algorithm improves
over the state of the art [4].2 We note that differentially private mirror descent has been considered before by [40] and
[42]. Their results are not directly comparable to ours because (i) they do not have access to in-distribution public data
(ii) as shown in [6], without public data, it is impossible to achieve the dimension independent bounds we achieve (iii)
in our experiments we solve unconstrained optimization problems, but those works choose the mirror map based on
the constraint set rather than the data set. We note that the utility bounds we prove in this paper also apply to a public
data-assisted variant of the accelerated mirror descent algorithm considered in [42].
In-distribution vs. Out-of-distribution Public Data: Prior works have considered both settings where the public
data set Dpub comes from the same distribution as the private data Dpriv (a.k.a. in-distribution) [4, 7, 23, 44], and
where the distributions are different (a.k.a. out-of-distribution) [1, 26, 27, 35, 36, 43]. In principle, our algorithm can
be used in out-of-distribution settings, but our results in this paper are for the in-distribution case. In the in-distribution
setting, it is typical that there are fewer public data samples available than private data samples – i.e., npub � npriv
– as it is harder to obtain public data sets than ones with privacy constraints attached. In-distribution public data
could come from either altruistic opt-in users [5, 31] or from users who are incentivized to provide such data (e.g.,
mechanical turks). Out-of-distribution public data may be easier to obtain but can have various degrees of freedom;
e.g., the domains of private and public data may not be identical, the representation of some classes may vary, the
distributions can be mean shifted, etc. It is usually hard to quantify these degrees of freedom to the extent that we can
provide precise guarantees. Hence, we leave this aspect for future exploration, and work with the idealized assumption
that the public data comes from the same distribution as the private data, or, at least, that the differences between these
two distributions are not material.
Design of Algorithms without Relying on Convexity for Privacy: While most of our theoretical utility guarantees
are specific to convex functions, our algorithm can be used seamlessly in non-convex settings. The main reason is
that its DP guarantee does not rely on convexity. Prior work that provided similar dimension-independent excess
population risk guarantees under the the same conditions as ours (i.e., npub ≥ p) [19] heavily relied on convexity to
ensure DP and hence, cannot be used in non-convex settings.
Choice of Benchmark for Empirical Comparison: Mirror descent [21, 33] as a first step optimizes the mirror map
function. In our setting, this corresponds to pre-training on the public loss function L(θ;Dpub) before running the DP

1For the ease of presentation, at this point we do not consider the noise due to stochastic mini-batching.
2The implementation of Asi et al. [4] is not publicly available. Since the algorithms can be sensitive to hyperparameter choices, for a fair

comparison we directly consider the results quoted in [4].
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optimization procedure on L(θ;Dpriv). Since pre-training on public data is intuitive and easy, we always compare to
DP-SGD (and its variants) that have been pre-trained to convergence with the public loss. We show that our algorithm
outperforms even pre-trained DP-SGD. To the best of our knowledge, ours is the only empirical work that compares
to this strong (but fair) benchmark.
Other Uses of Public Data in DP Learning: The use of in-distribution public data has been extensively explored
both theoretically and empirically. On the theoretical side, it has been shown [3, 10] that a combination of private
and public data samples can yield asymptotically better worst-case PAC learning guarantees than either on their own.
Another line of work [8, 16, 32, 35, 36] considers public data that is unlabelled, but otherwise comes from the same
distribution as the private data; the primary goal is to use the private data to generate labels for the public data, which
can then be used arbitrarily. So far only two papers have considered out-of-distribution data. [12] assume that whether
a data record is public or private depends on its label; e.g., the public data may contain many negative examples, but
few positive examples. They show that halfspaces can be learned in this model. [27] consider synthetic data generation
and provide guarantees that depend on the Rényi divergences between the public and private distributions. [1] and [41]
provided techniques to effectively use out-of-distribution public data for pre-training for DP-SGD. However, they did
not consider techniques to improve a pre-trained model using private and public data, which is the focus of our work.

1.1 Problem Formulation
Consider the classic differentially private stochastic convex optimization (DP-SCO) [6, 9, 11, 13] setting. Let τ
be a distribution over a fixed domain D. Given a data set D ∈ D∗ drawn i.i.d. from τ , and a loss function
`priv : Rp × D → R, the objective is to approximately solve arg min

θ∈C
Ed∼τ [`priv(θ; d)], while preserving DP. Here,

C ⊆ Rp is the constraint set. Usually one solves the SCO problem via empirical risk minimization (ERM), i.e.,
θpriv ∈ arg min

θ∈C
L(θ;D), where L(θ;D) = 1

|D|
∑
d∈D

`priv(θ; d), and then uses θpriv as a proxy. Up to a depen-

dence on dimensionality p, in the DP setting, a direct translation from ERM to the SCO setting provides the optimal
rates [6, 9, 11]. Since we will strive for dimension-independent convergence rates, we thus safely ignore the issue of
non-optimality due to dimensionality, and treat the ERM and SCO problems as almost equivalent.

In this paper, we consider the DP-SCO setting with heterogeneous data, where there are two data sets Dpriv (with
npriv samples) and Dpub (with npub samples) drawn i.i.d. from the same distribution. The private data set Dpriv

consists of records from individuals who require privacy protection, whereas the public data set Dpub does not require
any privacy protection. Since obtaining such data can be expensive, for our empirical evaluation, we assume npub is a
small fraction of npriv (e.g., < 5%).

We will also use a separate public loss function `pub. For our theoretical analysis, we will assume `priv is convex
and L-Lipschitz, whereas `pub is strongly convex (both with respect to the `2-norm). In practice, one will likely choose
`priv = `pub, but clip the gradients of `priv for privacy. In general, `pub can be arbitrary, but for the analysis, we will
assume that `pub and `priv roughly share a minimizer and that ∇`pub(θ; d) has bounded variance (see Assumption 3.1
for a formal statement). We refer the reader to Appendix A for a reference for the notation used throughout the paper.

1.2 Our Contributions

Dimension Independent Excess Population Risk for Constrained ERMs: The standard private SCO excess em-

pirical loss bound for a constraint set C is: O
(
L ‖C‖2 ·

√
p log(1/δ)

εnpriv

)
, where L is the Lipschitz constant of the loss

function and n is the number of samples in the dataset. If we pre-train on public data and are able to find a solution
within distance O

(
1√
p

)
of the optimal solution, we can set C to be the ball of radius O

(
1√
p

)
centered on the pre-

trained model and obtain a similar dimension-independent error rate. There are a couple of issues with this approach:
(i) It bakes in the utility assumption about the constraint set into the algorithm. This is unsatisfactory because if we
are unlucky (due to stochasticity or choice of hyperparameters) and the optimal solution does not lie within this ball,
using this choice of C may restrict us to a range of poor solutions that we cannot escape even if the number of private
samples is very large, and (ii) It forces one to operate with projected gradient descent which may significantly impact
accuracy in settings where the utility assumptions may not hold, e.g., in deep learning.
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We improve upon this by showing that given npub public samples in addition to npriv private samples, using our
PDA-DPMD (Public Data-Assisted Differentially Private Mirror Descent) algorithm, a variant of mirror descent that
implicitly reshapes the noisy gradients according to the public loss function, we can achieve excess empirical loss

O

(
LV · GQ

√
log(1/δ)

εnpriv
√
npub

)
. The bound is proven in Theorem 3.2. Here, V is a measure of the variance of the gradients

of `pub, and GQ is the Gaussian width of the smallest set Q such that the public loss functions are 1-strongly convex
with respect to ‖ · ‖Q. In particular, GQ is at most

√
p if the public loss functions are 1-strongly convex, but can be

constant if e.g. the public loss functions have a much larger strong convexity parameter in all but a constant number
of basis directions. Note that if we have npub = G2

Q public samples, then the 1/
√
npub and GQ terms cancel out,

i.e. this error bound has no explicit dependence on dimension. Using standard techniques, we can turn this into a
dimension-independent excess population loss bound (see Theorem 3.5), again assuming npub ≥ G2

Q. In addition, to
the best of our knowledge, ours is the first work on augmenting private training with public data to show a theoretical
improvement over DP-SGD (here the dependence 1√

npub
) due to pre-training on public data. In particular, we show

pre-training improves the standard DP-SGD bounds even under a totally isotropic geometry.
Local Noise-stability of Mirror Descent: We show that in addition to achieving better excess population loss bounds,
PDA-DPMD has the following “local noise-stability” property: If in a bounded region around the current iterate, the
public loss satisfies αv-strong convexity in a direction v, then using noisy gradients instead of the exact gradients
shifts our next iterate in the direction v by an amount proportional to 1/αv (see Theorem 3.6). That is, PDA-DPMD
effectively rescales the effect of adding noise in any direction to be inversely proportional to the curvature in that
direction. Note that this is in spite of the fact that for privacy, the noise we add to the gradients is usually isotropic.
Furthermore, this rescaling is done purely as a function of the public loss function used by PDA-DPMD. In other
words, a practitioner implementing PDA-DPMD simply needs to choose an appropriate loss function, and PDA-
DPMD will “automatically” rescale the effects of noise to match the loss function’s curvature.
Empirical Evaluation: On both synthetic and real-world benchmark data sets, we show that PDA-DPMD outperforms
DP-SGD, even when they are pre-trained on the public data set. We provide two sets of experiments. First, a linear
regression on a synthetic data set which closely matches the utility assumptions in the theoretical analysis. Second,
we provide results on standard deep learning benchmark data sets (WikiText-2, CIFAR-10, and EMNIST).

In Section 3, we consider using DP-SGD and PDA-DPMD to solve a least squares linear regression problem on a
synthetic data set generated via the process bi ∼ N(〈ai, θ∗〉, σ2), where θ∗ ∈ Rp is the true model. The feature vectors
ai’s are drawn i.i.d. from some fixed distribution. We fix the number of private data samples, and set the number of
public samples to be a fixed constant times the dimension (p). We observe that as expected, public data allows us
to substantially improve the error in two ways: (i) Pre-training: DP-SGD initialized from a model pre-trained on
public data has nearly-constant mean-squared error, whereas DP-SGD from a random initialization has mean-squared
error scaling with the dimension, and (ii) Adapting to geometry using public loss: While DP-SGD initialized from a
pre-trained model already achieves near-constant loss, we also observe that PDA-DPMD outperforms DP-SGD due to
its error’s dependence on the Gaussian width GQ rather than the dimension. We note that the observed improvement
is “automatic” once we choose the mean-squared error to be the loss function.

For sample-level DP, we conduct experiments in Section 4.2 on two real world tasks: next word prediction on
WikiText-2, and image classification on CIFAR-10 and EMNIST (ByMerge split). We consider 4% of the original
training data as public and pre-train on it. On all datasets, we can observe that an approximate version of PDA-DPMD
outperforms DP-SGD in terms of test loss. On CIFAR-10, the improvement is more than 5%; on EMNIST, 7%; on
WikiText-2, log perplexity is improved by more than 0.3%, which is a notable improvement for perplexity. For user-
level DP, we conduct experiments in Section 4.3 for next word prediction on the StackOverflow dataset. We consider
∼0.03% of the original training users as public and pre-train using them. We observe that the approximate version
of PDA-DPMD tailored towards a user-level setting (e.g., based on DP Federated Averaging (DP-FedAvg) [29]) out-
performs DP-FedAvg: PDA-DPMD obtains a 0.57% increase in accuracy, and a 5.3% drop in perplexity. Note that
PDA-DPMD can directly apply to Federated Learning [28] settings since the orchestrating server does not need to
provide the public data to any of the participating private clients.

For the deep learning experiments, running PDA-DPMD was computationally expensive. We derive a first-order
approximation that can be viewed as regular DP-SGD on a convex combination of private and the public losses, i.e.,
α∇L(θ;Dpriv)+(1−α)∇L(θ;Dpub), α ∈ [0, 1], where∇L(θ;Dpriv) is privatized by clipping and adding noise. This
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approximation makes the running time of our algorithm comparable to DP-SGD when run on the data setDpriv∪Dpub.

2 Background

Differential Privacy: Differential Privacy (DP) – originally defined by Dwork et al. [18] – is a formal method for
quantifying the privacy leakage from the output of a data analysis procedure. A randomized algorithm M : D∗ → Y
is (ε, δ)-DP if, for all neighbouring dataset pairs D,D′ ∈ D∗ and all measurable sets of outputs S ⊆ Y , we have

P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ.

We define two datasets to be neighbouring if they differ only by the addition or removal of one person’s record.
We ensure differential privacy by adding Gaussian noise to functions of bounded sensitivity. In particular, if ` is L-
Lipschitz in its first parameter, then ‖∇θ`(θ; d)‖2 ≤ L for all θ and d ∈ D. Thus adding noise drawn fromN (0, σ2 ·Ip)
to the sum

∑
i

∇θ`(θ, di) over people’s records satisfies DP, where σ scales with L and the desired privacy parameters.

The composition and postprocessing properties of differential privacy ensure that, as long as each step in our iterative
algorithm satisfies differential privacy, then so does the overall system. We refer the reader to [17] for further details
of the standard privacy analysis of algorithms like ours.
Mirror Maps: A mirror map is a differentiable function Ψ : Rp → R that is strictly convex. Since Ψ is strictly
convex and differentiable, ∇Ψ : Rp → Rp provides a bijection from Rp to itself. One can view θ as lying in a primal
space and ∇Ψ(θ) as lying in a dual space. In turn, we could now consider optimizing over the value ∇Ψ(θ) in the
dual space instead of θ primal space. Mirror descent does exactly that, performing gradient descent in the dual space
by computing the gradient gt = ∇`(θt) (where θt lies in the primal space), taking a step in the opposite direction
in the dual space, and then using the inverse of the mirror map to determine θt+1. Mirror descent is essentially
motivated as minimizing a (linearized) loss plus a Bregman divergence (induced by Ψ) as the regularizer [33]. More
formally, similar to proximal gradient descent, mirror descent is equivalent to taking the gradient gt and performing
the update θt+1 = arg minθ∈C [η〈gt, θ〉 + BΨ(θ, θt)] where BΨ(θ1, θ2) = Ψ(θ1) − Ψ(θ2) − 〈∇Ψ(θ2), θ1 − θ2〉
is the Bregman divergence generated by Ψ. Note that, if Ψ(θ) = ‖θ‖22, then the Bregman divergence is simply
BΨ(θ1, θ2) = ‖θ1 − θ2‖22 and mirror descent is equivalent to the usual gradient descent.
Gaussian Width: Given a bounded set Q ⊂ Rd, the Gaussian width of Q, GQ, is a measure of how isotropic the
set is. GQ is defined as Eg∼N(0,Ip) maxx∈Q〈g, x〉. Although the Gaussian width is well-defined for any bounded
set, for this paper it suffices to consider defining the Gaussian width of convex sets containing the origin such that
maxx∈Q ‖x‖2 = 1. If Q is just the unit `2-ball, the “most isotropic” set satisfying this condition, then we have GQ =√
p; in particular, since every set Q satisfying maxx∈Q ‖x‖2 = 1 is contained in the `2-ball, this is the maximum

Gaussian width of any such set. On the other hand, if Q is just the line from the origin to a single unit vector, we have
GQ = Θ(1). More generally, for any ellipsoid centered at the origin whose axes have radii 0 ≤ ri ≤ 1, 1 ≤ i ≤ p, we
have that the Gaussian width of this ellipsoid is

√∑p
i=1 r

2
i . As other examples, the Gaussian width of the `1-ball of

radius 1 is roughly log p, and the Gaussian width of the `∞ ball of radius 1/
√
p is roughly

√
p.

3 Public Data Assisted Differentially Private Mirror Decent
In this section, we present our algorithm, PDA-DPMD, dimension-independent excess empirical and population loss
bounds for PDA-DPMD (Theorems 3.2 and 3.5), and a “noise stability” property (Theorem 3.6).
Algorithmic Description: Our main algorithm, Public Data-Assisted Differentially Private Mirror Descent (PDA-
DPMD), is given as Algorithm 1. PDA-DPMD is a variant of mirror descent using noisy gradients, but we also
pre-train on public data and use the public loss as our mirror map Ψ.

Note that Line 4 of PDA-DPMD is equivalent to the following: Choose θt+1/2 to be the point such that∇Ψ(θt+1/2) =
∇Ψ(θt) − η(gt + bt), and then use the Bregman projection θt+1 = arg minθ∈C BΨ(θ, θt+1/2). Intuitively, PDA-
DPMD is similar to DP-SGD, with the main difference being we apply the gradient steps to ∇Ψ(θ) rather than to θ
itself. Note that PDA-DPMD reshapes the gradient and noise automatically given `pub and Dpub. In contrast, e.g.,
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Algorithm 1 Public Data-Assisted Differentially Private Mirror Descent (PDA-DPMD)
Input: Public/private datasets Dpub, Dpriv of sizes npub, npriv, private/public loss functions `priv, `pub, privacy param-
eters (ε, δ), number of iterations T , learning rate η : {0, 1, . . . , T − 1} → R+, constraint set: C, clipping norm L: an
upper bound on max

θ∈C
‖∇`priv(θ)‖2

1: Ψ(θ) := 1
npub

∑
d∈Dpub

`pub(θ; d), θ0 ← arg minθ∈C Ψ(θ), σ2 ← 8L2T log(1/δ)
(εnpriv)2

2: for t = 0, . . . , T − 1 do
3: gt ← 1

npriv

∑
d∈Dpriv

∇`priv(θ; d)

4: θt+1 ← arg minθ∈C [ηt〈gt + bt, θ〉+BΨ(θ, θt)], where bt ∼ N (0, σ2 · Ip)
5: end for
6: return θpriv := 1

T

∑T
t=1 θt

private AdaGrad implementations [4, 22] assume knowledge of the geometry of the loss function has already been
learned prior to running their algorithms. Also, for an appropriate choice of Ψ, one can recover an algorithm that
projects the private gradients to a low-dimensional subspace as in the algorithms of Zhou et al. [44] and [22].
Dimension Independent Empirical Risk Bounds for Convex Losses: We bound the excess empirical loss on the
public loss function `pub, compared to the private population minimizer θ∗ (rather than the empirical minimizer). This
is because the empirical minimizer θemp of the private loss function could be far away from θ∗, and in turn∇Ψ(θemp)
could be much larger in expectation than ∇Ψ(θ∗). Our PDA-DPMD excess empirical loss bound will be in terms of
∇Ψ(θ), where θ is the point we are comparing to, so it is preferable to use θ = θ∗ for this reason.

We will use the following “bounded variance” assumption on the distribution of the datasets and the public loss
function:

Assumption 3.1. For some minimizer θ∗ ∈ arg minθ∈C Ed∼τ [`priv(θ; d)] we have that θ∗ is also the minimizer of

Ed∼τ [`pub(θ; d)] in C and Ed∼τ
[
‖∇`pub(θ∗; d)− Ed∼τ [∇`pub(θ∗; d)]‖22

]
≤ V 2. In particular, this implies

ED∼τnpub

[∥∥∥ 1
npub

∑
d∈D∇`pub(θ∗; d)− Ed∼τ [∇`pub(θ∗; d)]

∥∥∥2

2

]
= O

(
V 2

npub

)
.

We note that while Assumption 3.1 to capture the most general setting under which our analysis holds, and thus
captures scenarios where `pub and `priv could potentially be very different loss functions, the reader can think of them
as differing only slightly. Indeed, Assumption 3.1 captures several scenarios we might see in practice, such as (i)
`pub = `priv (which can occur if ‖C‖2 is small), (ii) `priv is the clipped version of `pub (see e.g., [39] for a discussion
on the effects of clipping on the loss function), and (iii) `pub is `priv but with a regularizer added. Our empirical loss
bound now follows by using the bounded variance assumption to control the Bregman divergence between the initial
iterate and the population minimizer:

Theorem 3.2. Suppose the private loss function L := 1
npriv

∑
d∈Dpriv

`priv(θ; d) is L-Lipschitz and convex. Suppose
`pub is α-strongly convex, and let Q be the minimal convex body containing the origin such that each `pub(θ; d) is
1-strongly convex with respect to the Minkowski norm ‖ · ‖Q (defined as ‖x‖Q = min{c ∈ R≥0|x ∈ cQ}). Then
PDA-DPMD is (ε, δ)-differentially private with respect to the private database Dpriv and choosing ηt = η for all t we
have:

EDpub∼τnpub [L(θpriv)]− L(θ∗) ≤ V 2

2αηTnpub
+ η ·O(L2 ‖Q‖22 + σ2(G2

Q + ‖Q‖22)).

Proof. The privacy guarantee follows from the moments accountant analysis of [1].
For the utility guarantee, following the analysis of Theorem 3.2 of [40], we have:

E[L(θpriv)]− L(θ∗) ≤ BΨ(θ∗, θ0)

ηT
+ η ·O(L2 ‖Q‖22 + σ2(G2

Q + ‖Q‖22), (1)

Let θ∗ in particular be the minimizer satisfying Assumption 3.1. By α-strong convexity, we have:
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BΨ(θ∗, θ0) = Ψ(θ∗)−Ψ(θ0)−∇Ψ(θ0) · (θ∗ − θ0) ≤ 1

2α
‖∇Ψ(θ∗)−∇Ψ(θ0)‖22 .

Plugging this into Eq. (1) and noting that any Ψ we sample is 1-strongly convex with respect to ‖ · ‖Q, we get:

E[L(θpriv)]− L(θ∗) ≤
E
[
‖∇Ψ(θ∗)−∇Ψ(θ0)‖22

]
2αηT

+ η ·O(L2 ‖Q‖22 + σ2(G2
Q + ‖Q‖22)

We will show that without loss of generality, we can assume ∇Ψ(θ0) = 0 and Ed∼τ [∇`pub(θ∗; d)] = 0. Once we
have this assumption, Assumption 3.1 completes the proof.

The assumption follows since by convexity of C we have

〈∇Ψ(θ0), θ0 − θ∗〉 ≤ 0, 〈Ed∼τ [∇`pub(θ∗; d)], θ∗ − θ0〉 ≤ 0 (2)

Then for any choice of Ψ and C where either θ0 or θ∗ is on the boundary of C, suppose we extend C infinitesmally
along the line {θ0 + c(θ∗ − θ)|c ∈ R} (i.e., take a point on this line infinitesmally outside of C and update C to be the
convex hull of itself and this point). Then by (2) we have that θ∗, θ0, defined as the minimizers in C, move apart from
each other along this line and in turn by strong convexity the quantity ‖∇Ψ(θ∗)−∇Ψ(θ0)‖22 cannot decrease. This

implies that for any fixed `pub and τ , the quantity E
[
‖∇Ψ(θ∗)−∇Ψ(θ0)‖22

]
is maximized for a choice of C such that

∇Ψ(θ0) = 0 and Ed∼τ [∇`pub(θ∗; d)] = 0.

The above bound is scale-invariant, so to simplify the presentation of this section, we assume, without loss of
generality, that α = 1 (this also implies Q is contained within the unit `2-ball, i.e. ‖Q‖2 ≤ 1). By rescaling Ψ and η
appropriately, we do not affect the behavior of PDA-DPMD, but get that Ψ is 1-strongly convex.

By chaining the following lemma with Theorem 3.2, we get an excess empirical loss bound with respect to the
sample minimizer rather than the population minimizer as desired.

Lemma 3.3. Let τ be a distribution overD, ` : C×D → R be a function such that `(θ; d) isL-Lipschitz and convex in θ
for any fixed d ∈ supp(τ). Let θ∗ be the minimizer of Ed∼τ [`(θ; d)]. Then, we have ED∼τn [L(θ∗;D)−minθ∈C L(θ;D)] ≤
L‖C‖2√

n
.

Proof. By convexity, for all θ ∈ C we have L(θ;D) ≥ L(θ∗;D) + 〈∇L(θ∗;D), θ − θ∗〉. Note that by optimality of
θ∗ and convexity, for all θ ∈ C we have 〈Ed∼τ [∇`(θ∗; d)], θ− θ∗〉 ≥ 0. In turn, by the Cauchy-Schwarz inequality we
can conclude that L(θ∗;D)−minθ∈C L(θ;D) is always upper bounded by ‖C‖2 · ‖∇L(θ∗;D)− Ed∼τ [∇`(θ∗; d)]‖2.
By L-Lipschitzness of each `(θ; d) we have:

ED∼τn [‖∇L(θ∗;D)− Ed∼τ [∇`(θ∗; d)]‖2] ≤ L√
n
,

Which completes the proof.

Excess Population Risk of PDA-DPMD: We now translate our excess empirical loss bound to a excess population
loss. We use Lemma F.5 of Bassily et al. [6], restated in Lemma 3.4 for convenience, which provides a black-box
translation from empirical loss to population loss:

Lemma 3.4. For any (ε, δ)-DP algorithm for minimizing 1
npriv

∑
d∈Dpriv

`(θ; d) over C, the expected excess population

loss exceeds the expected excess empirical loss by O(L ‖C‖2 ε+ ‖C‖22 δ).

Given this lemma, it is straightforward to derive excess population loss bounds:

Theorem 3.5. For η = V

L
√
Tnpub

, T =
ε2n2

priv

G2
Q log(1/δ)

, and setting ε =

√
V GQ log1/4(1/δ)
√
nprivn

1/4
pub ‖C‖2

, the expected population loss of

PDA-DPMD is

O

(
L
√
V ‖C‖2

√
GQ log1/4(1/δ)

√
nprivn

1/4
pub

+
L ‖C‖2√
npriv

+ ‖C‖22 δ

)
.
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Theorem 3.5 follows immediately from Theorem 3.2, Lemma 3.3, and Lemma 3.4. Note that if npub ≥ G2
Q,

which is at most p, then the above bound has no explicit dependence on dimension. For comparison, if we were to
only train on public data, the standard non-private excess population loss bound has dependence O(1/

√
npub) (and no

dependence on dimension). So in the regime where npub ≈ G2
Q and npriv � npub, our bound is asymptotically much

better than the baseline of training only on public examples. In Appendix B we show what values Q and GQ take on
for some standard stochastic convex optimization problems to help the reader understand the bound in Theorem 3.5.
Local Stability Properties of PDA-DPMD: If the public loss function has a Hessian everywhere that has the same
eigenvectors regardless of location (but perhaps different eigenvalues), we can bound the impact of adding noise to the
gradient on each update in mirror descent:

Theorem 3.6. Suppose for the public loss function Ψ, its Hessian is defined everywhere, and for a fixed orthonormal
basis {vi}i, the Hessian at every point can be written as

∑
i wi(θ)viv

>
i for scalar functions wi : Rp → R+ such

that for all i, θ, we have wi(θ) ≥ α. Fix an iteration t as well as private gradient gt in PDA-DPMD. Let θ∗ be the
value of θt+1 after performing the mirror descent update with bt = 0 at iteration t, and let {w̃i}i, c ≥ 0 be such
that for each i the smallest value of wi(θ) in the ellipsoid E := (

∑
i

1
w̃i

viv
>
i )BR (where BR is the `2 ball of radius

R := η(1 + c)
√
pσ), centered at θ∗, is at least w̃i. Then for any (unit) direction v =

∑
i aivi,

E
[
|〈θ̂ − θ∗,v〉|

]
≤ ησ

√ 2

π
·

√√√√∑
i

(
ai
w̃i

)2

+
3(1 + c)2

2α
· e−c

2p/2

 ,
where θ̂ is the value of the next iterate θt+1 if noise is added.

Proof. Let bt be the noise added for privacy. Without noise, mirror descent would set θ∗ to be such that:

−ηgt = ∇Ψ(θ∗)−∇Ψ(θt).

Similarly, given the noisy gradient gt + bt, mirror descent would set θ̂ to be such that:

−η(gt + bt) = ∇Ψ(θ̂)−∇Ψ(θt).

We then have:

−ηbt = ∇Ψ(θ̂)−∇Ψ(θ∗).

Since we assume the Hessian of Ψ is defined everywhere, we have that∇Ψ(θ̂)−∇Ψ(θ∗) = ∇2Ψ(θ̃)(θ̂ − θ∗) for
some θ̃ on the line between θ̂ and θ∗. In turn, we have:

θ̂ − θ∗ = −η(∇2Ψ(θ̃))−1bt

The norm x of bt sampled from N(0, σ2Ip) has the chi distribution, i.e. pdf proportional to (x/σ)p−1e−(x/σ)2/2.
In particular, this gives the following standard tail bound:

Pr[‖X‖2 > (1 + c)
√
pσ] ≤ exp(−c2p/2).

So with probability at least 1 − e−c2p/2, we have the event E that ‖bt‖2 is at most (1 + c)
√
pσ. Conditioned on

this event, we have that θ̂, and thus θ̃, is in E, i.e. the lower bounds w̃i apply to∇2Ψ(θ̃). Since conditioning on E only
decreases the expectation of |〈θ̂ − θ∗,v〉|, we have:

E
[
η|〈θ̂ − θ∗,v〉||E

]
·Pr[E ] = ηE

[
|〈(∇2Ψ(θ̃))−1bt,v〉||E

]
·Pr[E ]

≤ ηE

[
|〈(
∑
i

1

w̃i
viv
>
i )bt,v〉||E ]

]
·Pr[E ] ≤ ηE

[
|〈(
∑
i

1

w̃i
viv
>
i )bt,v〉|

]
= E

[
|
∑
i

ai
w̃i
〈bt,vi〉|

]
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= ηE

[
|
∑
i

N(0, (ai/w̃i)
2)|

]
= ηE

[
|N(0,

∑
i

(ai/w̃i)
2)|

]
=

√
2

π
· ησ

√√√√∑
i

(
ai
w̃i

)2

.

When E does not happen, we have wi(θ) ≥ α everywhere. So we have:

E
[
η|〈θ̂ − θ∗, v〉||¬E

]
·Pr[¬E ] = ηE

[
|〈(∇2Ψ(θ̃))−1b, v〉||¬E

]
·Pr[¬E ]

≤ η · 1

α
E [|〈b, v〉||¬E ] · e−c

2p/2

To determine E [|〈bt,v〉||¬E ], note that the distribution of 〈bt,v〉 conditioned on ¬E is equivalent to the distribu-
tion of the first coordinate of bt conditioned on ¬E . We can sample bt by first sampling its norm ‖bt‖2 conditioned
on ¬E , and then sampling a point on the sphere with radius ‖bt‖2 (no conditioning is required here). The expected
absolute value of any coordinate (bt)i given ‖bt‖2 can be bounded as:

E [|(bt)i|] ≤
√
E [(bt)2

i ] = ‖bt‖2 /
√
p.

The inequality is Jensen’s inequality, and the equality uses the fact that the coordinates bi on the sphere are
identically distributed, and so we have:

p · E
[
(bt)

2
i

]
= E

[∑
i

(bt)
2
i

]
= ‖bt‖22 .

We now just need to bound the expectation of ‖bt‖2, given that it is at least R. Since the distribution of ‖bt‖2 /σ
has pdf proportional to xp−1e−x

2/2, this expectation is σ times:∫∞
(1+c)

√
p
xpe−x

2/2∫∞
(1+c)

√
p
xp−1e−x2/2

=
Γ((p+ 1)/2)(1− P ((p+ 1)/2, (1 + c)2p/2))√

2Γ(p/2)(1− P (p/2, (1 + c)2p/2))
.

Where Γ is the gamma function and P is the regularized gamma function. Analytically, we can verify that
Γ((p+1)/2)

Γ(p/2) ≤
√
p/2 for all p ≥ 1, and (1−P ((p+1)/2,(1+c)2p/2))

(1−P (p/2,(1+c)2p/2)) ≤ 3(1 + c)2 for all p ≥ 1. So we get:

E [‖bt‖2 |¬E ] ≤ 3(1 + c)2

2

√
pσ

Putting it all together, we get:

E
[
η|〈θ̂ − θ∗, v〉||¬E

]
·Pr[¬E ] ≤ η · 1

α
· 3(1 + c)2

2
· e−c

2p/2 · σ

Now applying the law of total expectation gives the theorem statement.

Note that the condition wi(θ) ≥ α can be enforced by adding an `2-regularizer to the public loss function
(since mirror descent only cares about differences in the gradients of the public loss function, the private training
phase of PDA-DPMD behaves the same regardless of where this regularizer is centered). In contrast for DP-SGD,
E
[
|〈θ̂ − θ∗,v〉|

]
=
√

2/π · ησ for any direction v.

Validation of Dimension-independence on Synthetic Linear Regression: To corroborate our theoretical results
with empirical validation, we consider the linear regression problem with mean squared error loss: 1

npriv
‖Xθ − y‖22.

Note that the exact optimum on the public data can be computed exactly as θ∗pub = (X>X)−1X>y. The mirror
descent step can also be solved exactly by applying the inverse of the Hessian X>X to the gradient, since the Hessian
is the same everywhere. For numerical stability, we add a small constant times the identity matrix to the Hessian
before computing its inverse. We also normalize the Hessian of the loss function so its inverse (which is applied to the
gradient before taking a step in PDA-DPMD) has maximum eigenvalue of one. This ensures that if the Hessian were a
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(a) Cold start DP-SGD vs.
warm start DP-SGD.
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Figure 1: Comparisons of the empirical loss on synthetic
linear regression data. The mean and error bars for a 95%
confidence interval over 20 runs are plotted. The optimal
population loss is 0.01.
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(a) σ = 0.5. ε = 15.7.
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(b) σ = 1.08. ε = 1.71.

Figure 2: WikiText-2. 4% public data. Validation and
test loss. Averaged over 3 runs. Full plots available at
Appendix C.3.

multiple of the identity matrix, DP-SGD and PDA-DPMD would behave exactly the same for the same hyperparameter
choice.

We vary the dimensionality of the problem p from 500 to 6000. For each p, we generate 10,000 private samples
and 1.5p public samples. The optimal θ∗ is sampled from N (0, Ip). To introduce a non-isotropic geometry, we
sample the feature vector xi such that 40 of the first p/5 features and 80 of the last 4p/5 features, chosen uniformly
at random, are set to 0.05, and the rest of the features are set to 0. In this way, the expected `2-norm of each feature
vector (and in turn each gradient) is dimension-independent, and thus the effects of clipping should not vary with p.
The predicted variable yi is sampled from N (θ∗ · xi, 0.01) so that the population mean squared error loss is always
0.01, i.e. independent of dimension. Since the norms of the gradients and number of private samples are dimension-
independent, our error bound is proportional to GQ/

√
p, i.e. we do not expect it to vary much with dimension. We set

ε = 1, δ = 10−5.
We consider three algorithms: (i) standard DP-SGD with a “cold start”, i.e. using a random initialization, (ii)

standard DP-SGD with a “warm start” on the model pre-trained with public data, and (iii) PDA-DPMD after pre-
training on public data. We perform a grid search over the learning rate, clipping norm, and number of epochs used
and report the best empirical loss. We perform 20 trials for each algorithm and dimension.

Figure 1a shows the empirical loss of cold- and warm-start DP-SGD. Since the dimension-dependent loss of DP-
SGD is the excess empirical loss, we report empirical rather than population loss. As expected, pre-training with
public data allows DP-SGD to achieve nearly dimension-independent error. Figure 1b compares warm-start DP-SGD
and PDA-DPMD. The loss of PDA-DPMD is never worse than that of warm-start DP-SGD, and can be substantially
lower for smaller dimensions. We observed that the ratio of the maximum and minimum eigenvalues of the Hessian
X>X decreases as p increases, which means that the Hessian has poorly-concentrated eigenvalues at small p but gets
closer to the identity matrix as p increases. Since PDA-DPMD recovers warm start DP-SGD when the Hessian is the
identity, we can expect that PDA-DPMD obtains less of an advantage over DP-SGD as the Hessian gets closer to the
identity.

4 Empirical Evaluation on Benchmark Data Sets

4.1 First-order Approximation to Mirror Descent
In practice, the Mirror Descent (MD) step in Line 4 of Algorithm 1 can be computationally expensive. For settings
where (i) the problem is unconstrained, i.e., C = Rp and (ii) the public loss function Ψ(θ) may not be strongly convex
with respect to the `2-norm, we can instead use the following more efficient approximation:

θt+1 ← θt − ηt (αt(gt + bt) + (1− αt)∇Ψ(θt)) , (3)

where ηt is the learning rate, and αt ∈ [0, 1] balances the weight of private and public gradient. The derivation of this
formula is in Appendix C.1. Notice that αt = 1 corresponds to DP-SGD on private data only. In our experiment, we
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Table 1: Metrics for the final models for each configuration for each data set.

Data set, metrics Algorithm Smaller σ Larger σ

WikiText-2,
test loss

DP-SGD cold 5.2626 5.5627
DP-SGD warm 5.1914 5.3288
PDA-DPMD 5.1736 5.2956

CIFAR-10,
accuracy / test loss

DP-SGD cold 62.9633 / 1.4225 40.6000 / 1.6890
DP-SGD warm 66.3933 / 1.2371 53.4100 / 1.3462
PDA-DPMD 67.0300 / 1.1435 55.3950 / 1.2785

EMNIST,
accuracy / test loss

DP-SGD cold 87.5671 / 0.5422 84.7270 / 0.6170
DP-SGD warm 87.8534 / 0.5089 86.3352 / 0.5586
PDA-DPMD 87.9860 / 0.4706 86.7229 / 0.4982

decrease αt with a cosine schedule, i.e. αt = cos(πt/(2K)) where K is a hyperparameter that controls how fast αt
decays. In practice, instead of computing gt and ∇Ψ(θt) using all the private and public data, we can estimate them
with stochastic gradients.

4.2 Evaluation with Sample-level Differential Privacy
Now, we demonstrate the efficacy of our technique (Algorithm 1) with the update step in (3) on two real world tasks
across three benchmark data sets: next word prediction on WikiText-2 [30], and image classification on CIFAR-10 [25]
and EMNIST (ByMerge split) [14]. For each dataset, we randomly assign 4% of the original training data as public,
and the rest as private. We do not consider a larger amount of in-distribution public data as that could make the
problem trivial. We first pre-train on the public data, then use Algorithm 1 with update rule (3). We compare our
algorithm with two baselines: “cold-start” DP-SGD, which uses the private data only, and “warm-start” DP-SGD,
which pre-trains the model with public data and then fine-tunes with the private data. We demonstrate an increased
benefit from the public data over and above just pre-training, which to our knowledge, has not been achieved in prior
work. For WikiText-2, we use an LSTM model from [4]. For CIFAR-10 and EMNIST, we use network architectures
considered in prior works [24, 37]. See Appendix C.2 for more details.
Empirical Evaluation on WikiText-2: Our setup mainly follows Asi et al. [4]. As a preprocessing step, we take
the top 7,999 most frequent words and convert the rest into a special token representing unknown word. The data
set is then split into 48,764 length-35 sequences, and we consider sequence-level privacy here. After pre-training, we
fine-tune the model with batch size 250 for 20 epochs. We search for optimal K in {100, 200, 500}. For two different
privacy levels, ε = 15.7 and 1.71 at δ = 10−5 (corresponding to σ = 0.5 and 1.08, respectively), Figure 2 shows the
test loss for PDA-DPMD with K = 100 and 50 respectively, and for the two baselines. From Table 1, we see that
PDA-DPMD obtains the smallest test loss for both the privacy levels. Also, comparing the two DP-SGD baselines, we
can see that using public data for pre-training provide trained models with higher utility.

Though our work’s focus is on in-distribution public data, we additionally compare with SoTA [4] which uses
WikiText-103 [30] as the public data. In that setting, our warm start DP-SGD baseline is better than the proposed
SoTA in [4] by 1.1% for ε = 1.0 and 6.6% for ε = 3.0 in terms of test perplexity.
Empirical Evaluation on CIFAR-10: CIFAR-10 consists of 50,000 training images and 10,000 test images from
10 classes. After pre-training, we fine-tune the model with batch size 500 for 100 epochs. We search for optimal
K in {200, 500, 1000, 2000, 5000}. In Figure 3, for two different privacy levels, ε = 3.51 and 0.19 at δ = 10−5

(corresponding to σ = 1.51 and 20.0, respectively), we report the test loss and accuracy for K = 2000, and for the
two baselines. From Table 1, we see that PDA-DPMD provides the best accuracy (even if by a small margin over the
warm started DP-SGD baseline). Moreover, PDA-DPMD also results in significantly lower test loss compared to both
the baselines for both privacy levels, which confirms with our theoretical analysis for the population loss.
Empirical Evaluation on EMNIST: EMNIST (ByMerge split) consists of 697,932 training images and 116,323 test
images from 47 classes. After pre-training, we fine-tune with batch size 500 for 50 epochs. We search for optimal K
in {200, 500, 1000, 2000, 5000}. In Figure 4 and Table 1, for σ = 0.41 and 1.89, corresponding to privacy ε = 25.80
and 0.48 at δ = 10−6, we report the test loss and accuracy for K = 500, and for the two baselines. We see a similar
trend as with CIFAR-10.
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(a) σ = 1.51. ε = 3.51.

0 2500 5000 7500 10000
step

48

50

52

54

te
st

 a
cc

ur
ac

y

0 2500 5000 7500 10000
step

1.30

1.35

1.40

1.45

1.50

te
st

 lo
ss

cos2000 DP-SGD warm

(b) σ = 20.0. ε = 0.19. Full plot in Appendix C.3.

Figure 3: CIFAR-10. 4% public data. Test accuracy / loss vs. training steps. Averaged over 3 runs.
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(a) σ = 0.41. ε = 25.80.
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(b) σ = 1.89. ε = 0.48.

Figure 4: EMNIST. 4% public data. Test accuracy / loss vs. training steps. Averaged over 3 runs.

4.3 Evaluation with User-level Differential Privacy
Next, we evaluate our technique (Algorithm 1) with the update step in 3 on settings suited for user-level DP guaran-
tees. In particular, we conduct our evaluation for next word prediction on the benchmark StackOverflow [34] dataset.
StackOverflow consists of 342,377 users having 135.8M examples in the training set, and 204,088 users having 16.6M
examples in the test set. Since StackOverflow is naturally keyed by users, we assume training in a federated learn-
ing [28] setting. For private users, we limit each user to have at most 256 examples. For each user having more than
256 examples in StackOverflow, we create a private user with 256 examples and a new user with at most 256 of the
overflowing examples. We randomly assign 100 such newly created users (0.03% of the total number of users) as
public users.

As in Section 4.2, we first pre-train on the public users, then use Algorithm 1 with the update step in 3 (with the
updates modeled on the DP Federated Averaging optimizer [29] instead of DP-SGD). The privacy guarantee is thus
user-level. We compare our algorithm with two baselines (analogous to the baselines in Section 4.2): “cold-start” DP-
Fedvg, and “warm-start” DP-FedAvg. In this setting too, we see benefits from the public data above just pre-training.
We use the one layer LSTM considered in [24] for our experiments on StackOverflow.

For pre-processing, we use the top 10000 most frequently used words and represent all other words with an
unknown token. We set the maximum length of each sequence to 20 and each client has a maximum of 256 sentences.
In each round of training, we sample 100 clients, and each client uses a batch size of 16 for local training. We train
for 1600 rounds. See Appendix C.2 for more details. We evaluate utility using accuracy on in-vocabulary words and
perplexity. The code has been open sourced. 3

We compare warmstart PDA-DPMD to warmstart DP-FedAvg. We fix the noise multiplier to σ = 0.4 so that
the client-level ε = 8.32 for δ = 10−6. We perform a grid search over the server learning rate {0.5, 1.0, 3.0}, the
client learning rate {0.1, 0.2, 0.5}, and clipping norm {0.3, 1.0} for both methods. We perform an additional search
for the optimal decay schedule for α for PDA-DPMD using cos(πt/(iT )) for i ∈ {2, 3, 4, 5, 8}, where T = 1600.
In Figure 5, we plot the eval accuracy / perplexity across training for αt = cos(πt/(5T )). Additionally, we plot the
eval loss in Figure 6. In Table 2, we present the test accuracy and perplexity for the final trained models. We see that
PDA-DPMD obtains a 0.57% increase in accuracy, and a 5.3% drop in perplexity compared to warmstart DP-FedAvg.

3Code for user-level experiments: https://github.com/google-research/public-data-in-dpfl
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(a) DP-FedAvg cold-start compared to DP-FedAvg warm-start. (b) DP-FedAvg warm-start and PDA-DPMD warm-start.

Figure 5: Stackoverflow. 0.03% public data. Eval accuracy / perplexity vs. training rounds. Averaged over 3 runs.

(a) DP-FedAvg cold-start and DP-FedAvg warm-start. (b) DP-FedAvg warm-start and PDA-DPMD warm-start.

Figure 6: Stackoverflow. 0.03% public data. Eval loss vs. training rounds. Averaged over 3 runs.

Data set Algorithm Accuracy Perplexity

StackOverflow
DP-FedAvg cold 18.52 ± 0.04 116.21 ± 0/08
DP-FedAvg warm 21.2 ± 0.03 85.03 ± 0.06
PDA-DPMD warm 21.77 ± 0.02 80.51 ± 0.2

Table 2: Mean and standard deviation of the Test accuracy and perplexity for trained models on StackOverflow
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A Notation Reference
We recall here the notation used throughout the paper:

α A strong convexity parameter
b Noise added to gradients for privacy
BΨ The Bregman divergence induced by Ψ
C The constraint set
d A single sample

Dpub, Dpriv The public and private data sets respectively
D The universe of samples
ε, δ The privacy parameters
η The learning rate/step size
g A (batch) gradient
GQ The Gaussian width of Q

`pub, `priv The (per-example) public and private loss functions respectively
L The Lipschitz constant of `priv
L The empirical (private) loss on dataset D, i.e. L(θ;D) = 1

|D|
∑
d∈D `(θ; d)

npub, npriv The number of public and private samples respectively
p The dimensionality of the optimization problem
Ψ The empirical public loss, i.e. Ψ(θ) = 1

|Dpub|
∑
d∈Dpub

`(θ; d); also the mirror map
Q A set such that Ψ is 1-strongly convex with respect to ‖ · ‖Q
T The number of iterations in the optimization algorithm
θ A solution to the optimization problem
V A bound on the variance of the public gradients

B Examples of Stochastic Convex Optimization Problems
In this section, we consider two canonical stochastic convex optimization problems and the associated quantity GQ,
to help understand the bound in Theorem 3.5. In both cases we specify the public loss; as previously mentioned, a
natural choice is to take the private loss to be the clipped version of the public loss to ensure Lipschitzness holds.
Mean Estimation: Suppose we assume we know the true covariance matrix Σ in the mean estimation problem for
data drawn from a multivariate Gaussian. Then mean estimation is equivalent to minimizing loss function 1

2n

∑
i(xi−

θ)>Σ−1(xi − θ), where xi is the ith sample point, and θ is our estimated mean. The Hessian is Σ−1. By rescaling,
wlog assume the maximum eigenvalue of Σ is 1. Now, the smallest set Q such that the public loss function is 1-
strongly convex with respect to the Q-norm is the ellipsoid centered at the origin whose axes are in the directions of
the eigenvectors of Σ, and whose length in the direction of the eigenvector vi is the corresponding eigenvalue λi. The
Gaussian width of Q is thus

√∑p
i=1 λ

2
i . In particular, if e.g. Σ only has a few large eigenvalues (i.e., the data only

has variance in a few directions), this is much smaller than p.
Linear Regression: We choose the loss to be the mean squared error. Now, the public loss function is proportional to
‖Xθ−y‖22, where X is the (public) feature matrix, y are the dependent variables, and θ is our model. In particular, this
has Hessian X>X. By normalizing, we can assume wlog the smallest eigenvalue of this matrix is 1, and so similarly
to mean estimation the quantity GQ is

√∑p
i=1 1/λ2

i , where λi are the eigenvalues of X>X (i.e., the singular values
of X). Note that unlike in the previous example (where we assumed we knew Σ a priori and thus the Hessian was
fixed), the Hessian here depends on the public data.
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C Additional Details on Real-world Experiments

C.1 First-order Approximation to Mirror Descent
In practice, the Mirror Descent (MD) step in Line 4 of Algorithm 1 is computationally the most challenging. In the
following, we provide an approximation of this step in the setting where i) the problem is unconstrained, i.e., C = Rp
and ii). the public loss Ψ(θ) may not be strongly convex with respect to the `2-norm. This approximation makes
Algorithm 1 efficient in practice.

Consider the following equivalence of Line 4 of Algorithm 1, with Ψ(θ), the public loss on Dpub, replaced by
Ψ̂(θ) = Ψ(θ) + 1

2 ‖θ‖
2
2. This follows from [21, Lemma 5.5].

θt+1 ← arg min
θ∈Rp

〈
t∑
i=1

ηi (gi + bi) , θ

〉
+ Ψ̂(θ) (4)

= arg min
θ∈Rp

t∑
i=1

ηi

(
〈gi + bi, θ〉+

1

tηi
Ψ(θ)

)
+

1

2
‖θ‖22

≈ arg min
θ∈Rp

t∑
i=1

ηi

〈
gi + bi +

1

tηi
∇Ψ(θi), θ

〉
+

1

2
‖θ‖22 , (5)

where (5) follows from the first-order approximation Ψ(θ) ≈ Ψ(θi) + 〈∇Ψ(θi), θ − θi〉.
In the experiments, we replace gi+bi+ 1

t·ηi∇Ψ(θi) with αi(gi+bi) + (1−αi)∇Ψ(θi), where αi ∈ (0, 1]. This
reparamertization helps with more effective hyperparameter tuning while training deep learning models. We therefore
have the update rule (3).

C.2 Setup

Network architectures: Table 3 shows model architectures for CIFAR-10, EMNIST, WikiText-2, & StackOverflow.
Hyperparameter Tuning: We keep the clipping norm to be 1. One small difference with the standard DP-SGD
update rule is that we enforce an additional clipping step for the privatized gradient for the image classification task,
where the clipping norm is the same as the clipping norm of for individual gradient. The reason for this additional step
is that the norm of the averaged clipping gradients should still be upper bounded by the clipping norm.

The only hyperparameters that need to be tuned are the learning rate and K that controls the decaying of αt. For
the learning rate, we consider a grid of {1, 2, 5}×10i for different is such that the optimal learning rate does not appear
on the boundary. We search for the optimal K in {100, 200, 500} for WikiText-2 and {200, 500, 1000, 2000, 5000}
for the image classification tasks.

C.3 Full Plots for Section 4.2
In Figure 7, we plot the complete version of Figure 2, and in Figure 8, we show the complete version of Figure 3.
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Figure 7: Full plot for Figure 2. WikiText-2. 4% public data.
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Table 3: Model architectures for real data experiments.

(a) Model architecture for CIFAR-10.

Layer Parameters

Convolution ×2 32 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 64 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 128 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Fully connected 128 units
Softmax -

(b) Model architecture for EMNIST.

Layer Parameters

Convolution 16 filters of 8× 8, strides 2
Convolution 32 filters of 4× 4, strides 2

Fully connected 32 units
Softmax -

(c) Model architecture for WikiText-2.

Layer Parameters

Input 8000
Fully connected 120

LSTM ×2 120 hidden units
Fully connected 8000

Softmax -

-

(d) Model architecture for StackOverflow.

Layer Parameters

Input 0
embedding 960384

LSTM 2055560
Fully connected 64416
Fully connected 970388

Softmax -
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Figure 8: Full plot of Figure 3. CIFAR-10. 4% public data. Test accuracy / loss vs. training steps. Averaged over 3
runs.

C.4 WikiText-2 with WikiText-103 as Public Data
We compare with the SoTA [4] which uses WikiText-103 as public data. Specifically, we consider their “LargeAux”
setting under ε = 1.0 and 3.0. Since the implementation for Asi et al. [4] is not public as of writing this work, we
make our best effort to match their experiment setup. We note that the data preprocessing and the number of iterations
used (thus the noise multiplier for achieving the same ε) might differ.

We preprocess WikiText-103 as follows. After processing WikiText-2 as described in Section 4.2, we convert
all words that does not appear in the processed WikiText-2 as the unknown token. Then, we split the sentences into
length-35 sequences, and remove all sequences that overlap with WikiText-2. Finally, we randomly sample 48,764
sequences, in order to match the “LargeAux” setting where the public dataset is of the same size as the private training
dataset.

Figure 9 shows the results. In our setting, cold start DP-SGD reaches similar log perplexity as those in [4], while
the warm-start DP-SGD is already better than [4] (LargeAux). The final test log perplexities are summarized below,
with the results in [4] converted from perplexity to log perplexity.

Algorithm ε = 3.0 ε = 1.0

[4] DP-SGD (cold) 5.4819 5.6623
[4] (LargeAux) 5.4324 5.5254

Our DP-SGD (cold) 5.4030 5.5956
Our DP-SGD (warm) 5.3646 5.5141
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Figure 9: WikiText-2. WikiText-103 as public data.
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