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Abstract

We consider training models with differential privacy (DP) using mini-batch gradients. The existing state-of-
the-art, Differentially Private Stochastic Gradient Descent (DP-SGD), requires privacy amplification by sampling or
shuffling to obtain the best privacy/accuracy/computation trade-offs. Unfortunately, the precise requirements on exact
sampling and shuffling can be hard to obtain in important practical scenarios, particularly federated learning (FL).
We design and analyze a DP variant of Follow-The-Regularized-Leader (DP-FTRL) that compares favorably (both
theoretically and empirically) to amplified DP-SGD, while allowing for much more flexible data access patterns.
DP-FTRL does not use any form of privacy amplification.

1 Introduction
Differentially private stochastic gradient descent (DP-SGD) [1, 6, 65] has become state-of-the-art in training private
(deep) learning models [1, 25, 27, 50, 55, 68]. It operates by running stochastic gradient descent [59] on noisy mini-
batch gradients1, with the noise calibrated such that it ensures differential privacy. The privacy analysis heavily uses
tools like privacy amplification by sampling/shuffling [1, 6, 24, 30, 40, 69, 73] to obtain the best privacy/utility trade-
offs. Such amplification tools require that each mini-batch is a perfectly (uniformly) random subset of the training data.
This assumption can make practical deployment prohibitively hard, especially in the context of distributed settings like
federated learning (FL) where one has little control on which subset of the training data one sees at any time [5, 38].

We propose a new online learning [32, 62] based DP algorithm, differentially private follow-the-regularized-leader
(DP-FTRL), that has privacy/utility/computation trade-offs that are competitive with DP-SGD, and does not rely on
privacy amplification. DP-FTRL significantly outperforms un-amplified DP-SGD at all privacy levels. In the higher-
accuracy / lower-privacy regime, DP-FTRL outperforms even amplified DP-SGD. We emphasize that in the context of
ML applications, using a DP mechanism even with a large ε is practically much better for privacy than using a non-DP
mechanism [35, 52, 64, 67].
Privacy amplification and its perils: At a high-level, DP-SGD can be thought of as an iterative noisy state update
procedure for T steps operating over mini-batches of the training data. For a time step t ∈ [T ] and an arbitrary mini-
batch of size k from a data set D of size n, let σt be the standard deviation of the noise needed in the tth update to
satisfy εt-differential privacy. If the mini-batch is chosen u.a.r. and i.i.d. from D at each time step2 t, then privacy
amplification by sampling [1, 6, 40, 69] allows one to scale down the noise to σt · (k/n), while still ensuring εt-
differential privacy.3 Such amplification is crucial for DP-SGD to obtain state-of-the-art models in practice [1, 55, 68]
when k � n.

*Google. {kairouz, mcmahan, shuangsong, omthkkr, athakurta, xuzheng}@google.com
1Gradient computed on a subset of the training examples, also called a mini-batch.
2One can also create a mini-batch with Poisson sampling [1, 49, 73], except the batch size is now a random variable. For brevity, we focus on

the fixed batch setting.
3A similar argument holds for amplification by shuffling [24, 30], when the data are uniformly shuffled at the beginning of every epoch.We do

not consider privacy amplification by iteration [28] in this paper, as it only applies to smooth convex functions.
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There are two major bottlenecks for such deployments: i) For large data sets, achieving uniform sampling/shuffling
of the mini-batches in every round (or epoch) can be prohibitively expensive in terms of computation and/or engineer-
ing complexity, ii) In distributed settings like federated learning (FL) [45], uniform sampling/shuffling may be infea-
sible to achieve because of widely varying available population at each time step. Our work answers the following
question in affirmative: Can we design an algorithm that does not rely on privacy amplification, and hence allows data
to be accessed in an arbitrary order, while providing privacy/utility/computation trade-offs competitive with DP-SGD?

DP-FTRL and amplification-free model training: DP-FTRL can be viewed as a differentially private variant of the
follow-the-regularized-leader (FTRL) algorithm [17, 44, 72]. The main idea in DP-FTRL is to use the tree aggregation
trick [14, 23] to add noise to the sum of mini-batch gradients, in order to ensure privacy. Crucially, it deviates from
DP-SGD by adding correlated noise across time steps, as opposed to independent noise. This particular aspect of
DP-FTRL allows it to get strong privacy/utility trade-off without relying on privacy amplification.
Federated Learning (FL) and DP-FTRL: There has been prior work [5, 57] detailing challenges for obtaining strong
privacy guarantees that incorporate limited availability of participating clients in real-world applications of Federated
Learning. Although there exist techniques like the Random Check-Ins [5] that obtain privacy amplification for FL
settings, implementing such techniques may still require clients to keep track of the number of training rounds being
completed at the server during their period(s) of availability to be able to uniformly randomize their participation.
On the other hand, since the privacy guarantees of DP-FTRL (Algorithm 1) do not depend on any type of privacy
amplification, it does not require any local/central randomness apart from noise addition to the model updates.

Appendices A and Section 2 describe additional related work and background, respectively.

1.1 Problem Formulation
Suppose we have a stream of data samples D = [d1, . . . , dn] ∈ Dn, whereD is the domain of data samples, and a loss
function ` : C × D → R, where C ∈ Rp is the space of all models. We consider the following two problem settings.
Regret Minimization: At every time step t ∈ [n], while observing samples [d1, . . . , dt−1], the algorithm A outputs a
model θt ∈ C which is used to predict on example dt. The performance of A is measured in terms of regret against an
arbitrary post-hoc comparator θ∗ ∈ C:

RD(A; θ∗) =
1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt). (1)

We consider the algorithm A low-regret if RD(A; θ∗) = o(1). To ensure a low-regret algorithm, we will assume
‖∇`(θ; d)‖2 ≤ L for any data sample d, and any models θ ∈ C. We consider both adversarial regret, where the data
sample dt are drawn adversarially based on the past output {θ1, . . . , θt} [32], and stochastic regret [33], where the
data samples in D are drawn i.i.d. from some fixed distribution τ .
Excess Risk Minimization: In this setting, we look at the problem of minimizing the excess population risk. Assum-
ing the data set D is sampled i.i.d. from a distribution τ , and the algorithm A outputs θ̂ ∈ C, we want to minimize

PopRisk(A) = Ed∼τ `(θ̂; d)−min
θ∈C

Ed∼τ `(θ; d). (2)

All the algorithms in this paper guarantee differential privacy [21, 22] and Rényi differential privacy [51] (See
Section 2 for details). The definition of a single data record can be one training example (a.k.a., example level privacy),
or a group of training examples from one individual (a.k.a., user level privacy). Except for the empirical evaluations
in the FL setting, we focus on example level privacy.

Definition 1.1 (Differential privacy [21, 22]). A randomized algorithm A is (ε, δ)-differentially private if for any
neighboring data sets D, D′ that differ in one record, and for any event S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where the probability is over the randomness of A.
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Table 1: Best known regret guarantees. Here, the high probability means w.p. at least 1− β over the the randomness
of the algorithm. The expected regret is an expectation over the random choice of the data set and the randomness of
the algorithm.

Class Adversarial Regret Stochastic Regret

Expected High probability Expected High probability

Least-squares
(and linear)

O
((

1√
n

+
√
p

εn

)
·

polylog
(
1
δ , n
))

[3]

Same as
general
convex

O
((

1√
n

+
√
p

εn

)
·

polylog
(
1
δ , n
))

[3]

O
((

1√
n

+
√
p

εn

)
·

polylog
(

1
δ , n,

1
β

))
[Theorem 4.3]

General convex Constrained and unconstrained: O
((

1√
n

+ p1/4√
εn

)
· polylog

(
1
δ , n,

1
β

))
[Theorem 4.1]

1.2 Our Contributions
Our primary contribution in this paper is a private online learning algorithm: differentially private follow-the-regularized
leader (DP-FTRL) (Algorithm 1). We provide tighter privacy/utility trade-offs based on DP-FTRL (see Table 1 for
a summary), and show how it can be easily adapted to train (federated) deep learning models, with comparable, and
sometimes even better privacy/utility/computation trade-offs as DP-SGD. We summarize these contributions below.
DP-FTRL algorithm: We provide DP-FTRL, a differentially private variant of the Follow-the-regularized-leader
(FTRL) algorithm [32, 44, 47, 62] for online convex optimization (OCO). We also provide a variant called the mo-
mentum DP-FTRL that has superior performance in practice. [3] provided a instantiation of DP-FTRL specific to
linear losses. [63] provided an algorithm similar to DP-FTRL, where instead of just linearizing the loss, a quadratic
approximation to the regularized loss was used.
Regret guarantees: In the adversarial OCO setting (Section 4.1), compared to prior work [3, 37, 63], DP-FTRL
has the following major advantages. First, it improves the best known regret guarantee in [63] by a factor of

√
ε

(from Õ

(√ √
p

ε2n

)
to Õ

(√√
p

εn

)
, when ε ≤ 1). This improvement is significant because it distinguishes centrally

private OCO from locally private [26, 40, 70] OCO4. Second, unlike [63], DP-FTRL (and its analysis) extends to the
unconstrained setting C = Rp. Also, in the case of composite losses [18, 44, 46, 72], i.e., where the loss functions are
of the form `(θ; dt) + rt(θ) with r : C → R+ (e.g., ‖ · ‖1) being a convex regularizer, DP-FTRL has a regret guarantee

for the losses `(θ; dt)’s of form: (regret bound without the rt’s) + 1
n

n∑
t=1

rt(θ
∗).

In the stochastic OCO setting (Section 4.2), we show that for least-square losses (where `(θ; dt) = (yt − 〈xt, θ〉)2
with dt = (xt, yt)) and linear losses (when `(θ; dt) = 〈dt, θ〉), a variant of DP-FTRL achieves regret of the form
O
((

1√
n

+
√
p

εn

)
· polylog

(
1
δ , n,

1
β

))
with probability 1 − β over the randomness of algorithm. Our guarantees are

strictly high-probability guarantees, i.e., the regret only depends on polylog(1/β).
Population risk guarantees: In Section 4.3, using the standard online-to-batch conversion [13, 61], we obtain a
population risk guarantee for DP-FTRL. For general Lipschitz convex losses, the population risk for DP-FTRL in
Theorem C.5 is same as that in [6, Appendix F] (up to logarithmic factors), but the advantage of DP-FTRL is that
it is a single pass algorithm (over the data set D), as opposed to requiring n passes over the data. Thus, we provide
the best known population risk guarantee for a single pass algorithm. While the results in [7, 9, 29] have a tighter
(and optimal) excess population risk of Θ̃(1/

√
n +
√
p/(εn)), they either require smoothness property of the convex

function for a single pass algorithm, or need to make n-passes over the data. For restricted classes like linear and least-
squared losses, DP-FTRL can achieve the optimal population risk via the tighter stochastic regret guarantee. Whether
DP-FTRL can achieve the optimal excess population risk in the general convex setting is left as an open problem.

4Although not stated formally in the literature, a simple argument shows that locally private SGD [19] can achieve the same regret as in [63].
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Empirical contributions: In Section 5, we study some trade-offs between privacy/utility/computation for DP-FTRL
and DP-SGD. We conduct our experiments on four benchmark data sets: MNIST, CIFAR-10, EMNIST, and Stack-
Overflow. We start by fixing the computation available to the techniques, and observing privacy/utility trade-offs. We
find that DP-FTRL achieves better utility compared to DP-SGD for moderate to large ε. In scenarios where ampli-
fication cannot be ensured (e.g., due to practical/implementation constraints), DP-FTRL provides substantially better
performance as compared to unamplified DP-SGD. Moreover, we show that with a modest increase in the computation
cost, DP-FTRL, without any need for amplification, can match the performance of amplified DP-SGD. Next, we focus
on privacy/computation trade-offs for both the techniques when a utility target is desired. We show that DP-FTRL can
provide better trade-offs compared to DP-SGD for various accuracy targets, which can result in significant savings in
privacy/computation cost as the size of data sets becomes limited.

To shed light on the empirical efficacy of DP-FTRL (in comparison) to DP-SGD, in Section 3.2, we show that
a variant of DP-SGD (with correlated noise) can be viewed as an equivalent formulation of DP-FTRL in the uncon-
strained setting ( C = Rp). In the case of traditional DP-SGD [6], the scale of the noise added per-step t ∈ [n] is
asymptotically same as that of DP-FTRL once t = ω(n).

2 Background

Differential Privacy: Throughout the paper, we use the notion of approximate differential privacy [21, 22] and Rényi
differential privacy (RDP) [1, 51]. For meaningful privacy guarantees, ε is assumed to be a small constant, and
δ � 1/|D|.

Definition 2.1 (RDP [1, 51]). A randomized algorithm A is (α, ε)-RDP if for any pair of neighboring datasets D, D′

that differ in one record, we have

1

α− 1
log E

o∼A(D)

(
Pr(A(D) = o)

Pr(A(D′) = o)

)α
≤ ε

Abadi et al. [1] and Mironov [51] have shown that an (α, ε)-RDP algorithm guarantees
(
ε+ log(1/δ)

α−1 , δ
)

-differential
privacy. Follow-up works [4, 12] provide tighter conversions. We used the conversion in [12] in our experiments.

To answer a query f(D) with `2 sensitivity L, i.e., maxneighboringD,D′ ‖f(D) − f(D′)‖2 ≤ L, the Gaussian

mechanism [22] returns f(D) +N (0, L2σ2), which guarantees
(√

1.25 log(2/δ)/σ, δ
)

-differential privacy [20, 22]

and (α, α/2σ2)-RDP [51].
DP-SGD and Privacy Amplification: Differentially-private stochastic gradient descent (DP-SGD) is a common al-
gorithm to solve private optimization problems. The basic idea is to enforce a bounded `2 norm of individual gradient,
and add Gaussian noise to the gradients used in SGD updates. Specifically, consider a dataset D = {d1, . . . , dn} and
an objective function of the form

∑n
i=1 `(θ; di) for some loss function `. DP-SGD uses an update rule

θt+1 ← θt −
η

|B|

(∑
i∈B

clip (∇θ`(θt; di), L) +N (0, L2σ2)

)

where clip (v, L) projects v to the `2-ball of radius L, and B ⊆ [n] represents a mini-batch of data.
Using the analysis of the Gaussian mechanism, we know that such an update step guarantees (α, α/2σ2)-RDP

with respect to the mini-batch B. By parallel composition, running one epoch with disjoint mini-batches guaran-
tees (α, α/2σ2)-RDP. On the other hand, previous works [1, 6, 69] has shown that if B is chosen uniformally at
random from [n], or if we use poisson sampling to collect a batch of samples B, then one step would guarantee(
α,O

(
α/2σ2 · (|B|/n)2

))
-RDP.

Tree-based Aggregation: Consider the problem of privately releasing prefix sum of a data stream, i.e., given a stream
D = (d1, d2, . . . , dT ) such that each di ∈ Rp has `2 norm bounded by L, we aim to release st =

∑t
i=1 di for all

t ∈ [1, T ] under differential privacy. Chan et al. [14], Dwork et al. [23] propose a tree-based aggregation algorithm to
solve this problem. Consider a complete binary tree T with leaf nodes as d1 to dT , and internal nodes as the sum of all
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leaf nodes in its subtree. To release the exact prefix sum st, we only need to sum up O (log(t)) nodes. To guarantee
differential privacy for releasing the tree T , since any di appears in log(T ) nodes in T , using composition, we can add
Gaussian noise of standard deviation of the order L

√
log(T ) log(1/δ)/ε to guarantee (ε, δ)-differential privacy.

Smith and Thakurta [63] used this aggregation algorithm to build a nearly optimal algorithms for private online
learning. One important aspect of Smith and Thakurta [63] result is that it showed the privacy guarantee holds even
for adaptively chosen sequences {dt}Tt=1, which is crucial for model training tasks.

3 Private Follow-The-Regularized-Leader
In this section, we provide the formal description of the DP-FTRL algorithm (Algorithm 1) and its privacy analysis.
We then show that a variant of differentially private stochastic gradient descent (DP-SGD) [6, 65] can be viewed of as
an instantiation of DP-FTRL under appropriate choice of learning rate.

Critically, our privacy guarantees for DP-FTRL hold when the data D are processed in an arbitrary (even adver-
sarily chosen) order, and do not depend on the convexity of the loss functions. The utility guarantees, i.e., the regret
and the excess risk guarantees require convex losses (i.e., `(·; ·) is convex in the first parameter). In the presenta-
tion below, we assume differentiable losses for brevity. The arguments extend to non-differentiable convex losses via
standard use of sub-differentials [32, 62].

3.1 Algorithm Description
The main idea of DP-FTRL is based on three observations: i) For online convex optimization, to bound the regret, for
a given loss function `(θ; dt) (i.e., the loss at time step t), it suffices for the algorithm to operate on a linearization
of the loss at θt (the model output at time step t): ˜̀(θ; dt) = 〈∇θ`(θt; dt), θ − θt〉, ii) Under appropriate choice of

λ, optimizing for θt+1 = arg min
θ∈C

t∑
i=1

˜̀(θ; dt) + λ
2 ‖θ‖

2
2 over θ ∈ C gives a good model at step t + 1, and iii) For

all t ∈ [n], one can privately keep track of
t∑
i=1

˜̀(θ; dt) using the now standard tree aggregation protocol [14, 23].

While a variant of this idea was used in [63] under the name of follow-the-approximate-leader, one key difference is
that they used a quadratic approximation of the regularized loss, i.e., `(θ; dt) + λ

t ‖θ‖
2
2. This formulation results in a

more complicated algorithm, sub-optimal regret analysis, and failure to maintain structural properties (like sparsity)
introduced by composite losses [18, 44, 46, 72].

Algorithm 1 AFTRL: Differentially Private Follow-The-Regularized-Leader (DP-FTRL)

Require: Data set: D = [d1, · · · , dn] arriving in a stream, in an arbitrary order; constraint set: C, noise scale: σ,
regularization parameter: λ, clipping norm: L.

1: θ1 ← arg min
θ∈C

λ
2 ‖θ‖

2
2. Output θ1.

2: T ← InitializeTree (n, σ2, L).
3: for t ∈ [n] do
4: Let ∇t ← clip (∇θ`(θt; dt), L), where clip (v, L) = v ·min

{
L
‖v‖2

, 1
}

.
5: T ← AddToTree (T , t,∇t).

6: st ← GetSum (T , t), i.e., estimate
t∑
i=1

∇i via tree-aggregation protocol.

7: θt+1 ← arg min
θ∈C
〈st, θ〉+ λ

2 ‖θ‖
2
2. Output θt+1.

8: end for

Later in the paper, we provide two variants of DP-FTRL (momentum DP-FTRL, and DP-FTRL for least square
losses) which will have superior privacy/utility trade-offs for certain problem settings.

DP-FTRL is formally described in Algorithm 1. There are three functions, InitializeTree , AddToTree ,
GetSum , that correspond to the tree-aggregation algorithm. At a high-level, InitializeTree initializes the tree
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data structure T , AddToTree allows adding a new gradient ∇t to T , and GetSum returns the prefix sum
t∑
i=1

∇t
privately. Please refer to Appendix B.1 for the formal algorithm descriptions.

It can be shown that the error introduced in DP-FTRL due to privacy is dominated by the error in estimating
t∑
i=1

∇t at each t ∈ [n]. It follows from [63] that for a sequence of (adaptively chosen) vectors {∇t}nt=1, if we perform

AddToTree (T , t,∇t) for each t ∈ [n], then we can write GetSum (T , t) =
∑t
i=1∇i + bt where bt is normally

distributed with mean zero, and ∀t ∈ [n], ‖bt‖2 ≤ Lσ
√
pdlg(n)e ln(n/β) w.p. at least 1− β.

Momentum Variant: We find that using an additional momentum term γ ∈ [0, 1] with Line 7 in Algorithm 1 replaced
by

vt ← γ · vt−1 + st, θt+1 ← arg min
θ∈C
〈vt, θ〉+

λ

2
‖θ‖22

gives superior empirical privacy/utility trade-off compared to the original algorithm when training non-convex models.
Throughout the paper, we refer to this variant as momentum DP-FTRL, or DP-FTRLM. Although we do not provide
formal regret guarantee for this variant, we conjecture that the superior empirical performance is due to the following
reason. The noise added by the tree aggregation algorithm is always bounded by O(

√
p ln(1/δ) · ln(n)/ε). However,

the noise at time step t and t+ 1 can differ by a factor of O(
√

lnn). This creates sudden jumps in between the output
models comparing to DP-SGD. The momentum can smooth out these jumps.
Privacy analysis: In Theorem 3.1, we provide the privacy guarantee for Algorithm 1 and its momentum variant (with
proof in Appendix B.2). In Appendix D, we extend it to multiple passes over the data set D, and batch sizes > 1.

Theorem 3.1 (Privacy guarantee). If ‖∇θ`(θ; d)‖2 ≤ L for all d ∈ D and θ ∈ C, then Algorithm 1 (and its momentum

variant) guarantees
(
α, αdlg(n)e2σ2

)
-Rényi differential privacy, where n is the number of samples in D. Setting σ =

√
2dlg(n)e ln(1/δ)

ε , one can guarantee (ε, δ)-differential privacy, for ε ≤ 2 ln(1/δ).

3.2 Comparing Noise in DP-SGD and DP-FTRL
In this section, we use the equivalence of non-private SGD and FTRL [46] to establish equivalence between a variant
of noisy-SGD and DP-FTRL, and hence make DP-SGD and DP-FTRl comparable.

Let D = {d1, . . . , dn} be the data set of size n. Consider a general noisy-SGD algorithm with update rule
θt+1 ← θt−η ·(∇θ` (θt; dt) + at), where η is the learning rate and at is some random noise. DP-SGD can be viewed
as a special case, where dt is sampled uniformly at random from D and at is drawn i.i.d. from N

(
0, Õ

(
L2

nε2

))
.

If we expand the recursive relation, we can see that the total amount of noise added to the estimation of θt+1 is

η
t∑
i=1

at = N
(

0, Õ
(
η2L2t
nε2

))
. Let bt be the noise added by the tree-aggregation algorithm at time step t of Algorithm

AFTRL. We can show that DP-FTRL can be written in the same form as in the above general noisy-SGD formula, where
i) the noise at = bt−bt−1, ii) the data samples dt’s are drawn in sequence from D, and iii) the learning rate η is set to
be 1

λ , where λ is the regularization parameter in Algorithm AFTRL. In this variant of noisy SGD, the total noise added

to the model is bt = N
(

0, Õ
(
η2·L2

ε2

))
.

Under the same form of the update rule, we can roughly (as the noise is not independent in the DP-FTRL case)
compare the two algorithms. When t = Ω(n), the noise of DP-SGD with amplification matches that of DP-FTRL up to
factor of polylog (n). As a result, we expect (and as corroborated by the population risk guarantees and experiments)
sampled DP-SGD and DP-FTRL to perform similarly. (In Appendix B.3 we provide a formal equivalence.)

4 Regret and Population Risk Guarantees
In this section we consider the setting when loss function ` is convex in its first parameter, and provide for DP-FTRL:
i) Adversarial regret guarantees for general convex losses, ii) Tighter stochastic regret guarantees for least-squares and
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linear losses, and iii) Population risk guarantees via online-to-batch conversion. All our guarantees are high-probability
over the randomness of the algorithm, i.e., w.p. at least 1− β, the error only depends on polylog(1/β).

4.1 Adversarial Regret for (Composite) Losses
The theorem here gives a regret guarantee for Algorithm 1 against a fully adaptive [62] adversary who chooses the
loss function `(θ; dt) based on [θ1, . . . , θt], but without knowing the internal randomness of the algorithm. See Ap-
pendix C.1 for a more general version of Theorem 4.1, and its proof.

Theorem 4.1 (Regret guarantee). Let θ be any model in C, [θ1, . . . , θn] be the outputs of Algorithm AFTRL (Algo-
rithm 1), and let L be a bound on the `2-Lipschitz constant of the loss functions. Setting λ optimally and plugging in
the noise scale σ from Theorem 3.1 to ensure (ε, δ)-differential privacy, we have that for any θ∗ ∈ C, w.p. at least
1− β over the randomness of AFTRL, the regret

RD(AFTRL; θ
∗) = O

(
L ‖θ∗‖2 ·

(
1√
n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

))
.

Extension to composite losses: Composite losses [18, 44, 46] refer to the setting where in each round, the algorithm
is provided with a function ft(θ) = `(θ; dt) + rt(θ) with rt : C → R+ being a convex regularizer that does not
depend on the data sample dt. The `1-regularizer, rt(θ) = ‖θ‖1, is perhaps the most important practical example,
playing a critical role in high-dimensional statistics (e.g., in the LASSO method) [10], as well as for applications like
click-through-rate (CTR) prediction where very sparse models are needed for efficiency [48]. In order to operate on
composite losses, we simply replace Line 7 of Algorithm AFTRL with

θt+1 ← arg min
θ∈C
〈st, θ〉+

t∑
i=1

ri(θ) +
λ

2
‖θ‖22,

which can be solved in closed form in many important cases such as `1 regularization. We obtain Corollary 4.2,
analogous to [46, Theorem 1] in the non-private case. We do not require any assumption (e.g., Lipschitzness) on the
regularizers beyond convexity since we only linearize the losses in Algorithm AFTRL. It is worth mentioning that [63]
is fundamentally incompatible with this type of guarantee.

Corollary 4.2. Let θ be any model in C, [θ1, . . . , θn] be the outputs of Algorithm AFTRL (Algorithm 1), and L be a
bound on the `2-Lipschitz constant of the loss functions. W.p. at least 1− β over the randomness of the algorithm, for
any θ∗ ∈ C, assuming 0 ∈ C, we have:

RD(AFTRL; θ∗) ≤
Lσ
√
pdlg ne ln(n/β) + L2

λ
+

λ

2n
‖θ∗‖22 +

1

n

n∑
t=1

rt(θ
∗).

4.2 Stochastic Regret for Least-squared Losses
In this setting, for each data sample di = (xi, yi) (with xi ∈ Rp and yi ∈ R) in the data set D = {d1, . . . , dn}, the
corresponding loss takes the least-squares form5: `(θ; di) = (yi − 〈xi, θ〉)2. We also assume that each data sample di
is drawn i.i.d. from some fixed distribution τ .

A straightforward modification of DP-FTRL, AFTRL-LS (given as Algorithm 2 in Appendix C.2), achieves the
following guarantee.

5A similar argument as in Theorem 4.3 can be used in the setting where the loss functions are linear, `(θ; d) = 〈θ, d〉 with d ∈ Rp and
‖d‖2 ≤ L.
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Theorem 4.3 (Stochastic regret for least-squared losses). Let D = {(x1, y1), . . . , (xn, yn)} ∈ Dn be a data set
drawn i.i.d. from τ , let L = max

x∈D
‖x‖2, and let max

y∼D
|y| ≤ 1. Let θ∗ ∈ C, µ = max

θ∈C
‖θ‖2, and ρ = max{µ, µ2}. Then

AFTRL-LS provides (ε, δ)-differentially privacy while outputting [θ1, . . . , θn] s.t. w.p. at least 1 − β for any θ∗ ∈ C,

ED [RD(AFTRL-LS; θ∗)] = O

(
L2ρ2

(√
ln(n)
n +

√
p ln5(n/β)·ln(1/δ)

εn

))
.

The arguments of [3] can be extended to show a similar regret guarantee in expectation only, whereas ours is a
high-probability guarantee.

4.3 Excess Risk via Online-to-Batch Conversion
Using the online-to-batch conversion [13, 61], from Theorem 4.1, we can obtain a population risk guarantee

O

((√
ln(1/β)
n +

√
p1/2 ln2(1/δ) ln(1/β)

εn

))
, where β is the failure probability. (See Appendix C.3 for a formal state-

ment.) For least squares and linear losses, using the regret guarantee in Theorem 4.3 and online-to-batch conversion,

one can actually achieve the optimal population risk (up to logarithic factors)O
(√

ln(n) ln(1/β)
n +

√
p ln5(n/β)·ln(1/δ)

εn

)
.

5 Empirical Evaluation
We provide an empirical evaluation of DP-FTRL (Algorithm 1) on four benchmark data sets, and compare its perfor-
mance with the state-of-the-art DP-SGD on three different axes: (1) Privacy, measured as an (ε, δ)-DP guarantee on
the mechanism, (2) Utility, measured as (expected) test set accuracy for the final trained model under the DP guarantee,
and (3) Computation cost, which we measure in terms of mini-batch size and number of training iterations.

First, we evaluate the privacy/utility trade-offs provided by each technique at fixed computation costs. Second, we
evaluate the privacy/computation trade-offs each technique can provide at fixed utility targets. A natural application
for this is distributed frameworks such as FL, where the privacy budget and a desired utility threshold can be fixed,
and the goal is to satisfy both constraints with the least computation. Computational cost is of critical importance in
FL, as it can get challenging to find available clients with increasing mini-batch size and/or number of training rounds.

We show the following results: (1) DP-FTRL provides superior privacy/utility trade-offs than unamplified DP-
SGD, (2) For a modest increase in computation cost, DP-FTRL (that does not use any privacy amplification) can
match the privacy/utility trade-offs of amplified DP-SGD for all privacy regimes, and further (3) For regimes with
large privacy budgets, DP-FTRL achieves higher accuracy than amplified DP-SGD even at the same computation cost,
(4) For realistic data set sizes, DP-FTRL can provide superior privacy/computation trade-offs compared to DP-SGD.

5.1 Experimental Setup

Datasets: We conduct our evaluation on three image classification tasks, MNIST [43], CIFAR-10 [42], EMNIST
(ByMerge split) [16]; and a next word prediction task on StackOverflow data set [53]. Since StackOverflow is naturally
keyed by users, we assume training in a federated learning setting, i.e., using the Federated Averaging optimizer for
training over users in StackOverflow. The privacy guarantee is thus user-level, in contrast to the example-level privacy
for the other three datasets (see Definition 1.1).

For all experiments with DP, we set the privacy parameter δ to 10−5 on MNIST and CIFAR-10, and 10−6 on
EMNIST and StackOverflow, s.t. δ < n−1, where n is the number of users in StackOverflow (or the number of
examples in the other data sets).
Model Architectures: For all the image classification tasks, we use small convolutional neural networks as in prior
work [55]. For StackOverflow, we use the one-layer LSTM network described in [58]. See Appendix E.1 for more
details.
Optimizers: We consider DP-FTRL with mini-batch model updates, and multiple epochs. We provide a privacy
analysis for both the extensions in Appendix D. We also consider its momentum variant DP-FTRLM. We find that DP-
FTRLM with momentum 0.9 always outperforms DP-FTRL. Similarly, for DP-SGD [31], we consider its momentum
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variant (DP-SGDM), and report the best-performing variant in each task. See Appendix E.2 for a comparison of the
two optimizers for both techniques.
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Figure 1: Privacy/accuracy trade-offs for DP-SGD (private baseline), DP-SGD without amplification (label “DP-SGD
(no-amp)”), and DP-FTRLM on MNIST (mini-batch size 250), CIFAR-10 (mini-batch size 500), and EMNIST (mini-
batch size 500). “4x” in the label denotes four times computation cost (by increasing batch size four times). Results
for “DP-SGD 4x” are deferred to Appendix F.

5.2 Privacy/Utility Trade-offs with Fixed Computation
In Figure 1, we show accuracy / privacy tradeoffs (by varying the noise multiplier) at fixed computation costs. Since
both DP-FTRL and DP-SGD require clipping gradients from each sample and adding noise to the aggregated update
in each iteration, we consider the number of iterations and the minibatch size as a proxy for computation cost. For
each experiment, we run five independent trials, and plot the mean and standard deviation of the final test accuracy at
different privacy levels. We provide details of hyperparameter tuning for all the techniques in Appendix F.1.

DP-SGD is the state-of-the-art technique used for private deep learning, and amplification by subsampling (or
shuffling) forms a crucial component in its privacy analysis. Thus, we take amplified DP-SGD (or its momentum
variant when performance is better) at a fixed computation cost as our baseline (shown as the red lines). We fix the
(samples in mini-batch, training iterations) to (250, 4800) for MNIST, (500, 10000) for CIFAR-10, and (500, 69750)
for EMNIST. Our goal is to achieve equal or better tradeoffs while processing data in an arbitrary order (that is, without
relying on any amplification).

DP-SGD without any privacy amplification (labelled “DP-SGD (no-amp)”) cannot achieve this: For all the data
sets, we find that the accuracy with DP-SGD (no-amp) at the highest ε in Figure 1 is worse than the accuracy of the
DP-SGD baseline even at its lowest ε. Further, if we increase the computation by four times (increasing the mini-batch
size by a factor of four), the privacy/utility trade-offs of “DP-SGD (no-amp) 4x” are still substantially worse than the
private baseline.6

For DP-FTRLM (blue) at the same computation cost as our DP-SGD baseline, as the privacy parameter ε increases,
the relative performance of DP-FTRLM improves for each data set, even outperforming the baseline for larger values
of ε. Further, if we increase the batch size by four times for DP-FTRLM, its privacy-utility trade-off almost always
matches or outperforms the amplified DP-SGD baseline, answering the primary question of this paper in the affir-
mative. In particular, for CIFAR-10 (Figure 1b), “DP-FTRLM 4x” provides superior performance than the DP-SGD
baseline even for the lowest ε.

We observe similar results for StackOverflow with user-level DP in Figure 2a. We fix the computation cost to 100
clients per round (also referred to as the report goal), and 1600 training rounds. DP-SGDM (or more precisely in this
case, DP-FedAvg with server momentum) is again our baseline (red). For DP-SGDM without privacy amplification
(DP-SGDM no-amp), the privacy/accuracy trade-off never matches that of the DP-SGD baseline, and gets significantly

6For completeness, we provide plots with the full performance of DP-SGD (no-amp), DP-SGD (no-amp) 4x, and DP-SGD 4x, in Appendix F.2.
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worse for lower ε. With a 4x increase in report goal, DP-SGDM no-amp nearly matches the privacy/utility trade-off
of the DP-SGD baseline, outperforming it for larger ε.

For DP-FTRLM, with the same computation cost as the DP-SGD baseline, it outperforms the baseline for the
larger ε, whereas for the four-times increased report goal, it provides a strictly better privacy/utility trade-off. We
conclude DP-FTRL provides superior privacy/utility trade-offs than unamplified DP-SGD, and for a modest increase
in computation cost, it can match the performance of DP-SGD, without the need for privacy amplification.
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Figure 2: (a) Accuracy on StackOverflow under different privacy epsilon by varying noise multiplier and batch sizes.
(b) Test accuracy of DP-SGDM and DP-FTRLM with various noise multipliers for StackOverflow. (c) Relationship
between user-level privacy ε (when δ ≈ 1/population) and computation cost (report goal) for two fixed accuracy targets
(see legend) on the StackOverflow data set.

5.3 Privacy/Computation Trade-offs with Fixed Utility
For a sufficiently large data set / population, better privacy vs. accuracy trade-offs can essentially always be achieved
at the cost of increased computation. Thus, in this section we slice the privacy/utility/computation space by fixing
utility (accuracy) targets, and evaluating how much computation (report goal) is necessary to achieve different ε for
StackOverflow. Our non-private baseline achieves an accuracy of 25.15%, and we fix 24.5% (2.6% relative loss) and
23% (8.6% relative loss) as our accuracy targets. Note that from the accuracy-privacy trade-offs presented in Figure 2a,
achieving even 23% for either DP-SGD or DP-FTRL will result in a very large privacy ε for the report goals considered
there.

For each target, we tune hyperparameters (see Appendix G.2 for details) for both DP-SGDM and DP-FTRLM at
a fixed computation cost to obtain the maximum noise scale for each technique while ensuring the trained models
meet the accuracy target. Specifically, we fix a report goal of 100 clients per round for 1600 training rounds, and tune
DP-SGD and DP-FTRL for 15 noise multipliers, ranging from (0, 0.3) for DP-SGD, and (0, 1.13) for DP-FTRL. At
this report goal, for noise multiplier 0.3, DP-SGD provides 18.89% accuracy at ε ∼ 19, whereas for noise multiplier
1.13 DP-FTRL provides 19.74% accuracy at ε ∼ 19. We provide the results in Figure 2b.

Now, for target accuracy 23% and 24.5%, we choose the largest noise multiplier for each technique that results
in the trained model achieving the accuracy target. For accuracies (23%, 24.5%), we select noise multipliers (0.015,
0.007) for DP-SGDM, and (0.268, 0.067) for DP-FTRLM, respectively. This data allows us to evaluate the pri-
vacy/computation trade-offs for both the techniques, assuming the accuracy stays constant as we scale up the noise
and report goal together (maintaining a constant signal-to-noise ratio while improving ε). This assumption was intro-
duced and validated by [49], which showed that keeping the clipping norm bound, training rounds, and the scale of
the noise added to the model update constant, increasing the report goal does not change the final model accuracy. In
Appendix G.1, we independently corroborate this effect for both DP-SGD and DP-FTRL on StackOverflow.

We plot the results in Figure 2c. For both the accuracy targets, DP-FTRLM achieves any privacy ε ∈ (0, 50) at
a lower computational cost than DP-SGDM. In Appendix G.3, we provide a similar plot for a hypothetically larger
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population, where we see that DP-FTRLM provides superior performance than DP-SGDM for most of the considered
privacy regimes.

6 Conclusion
In this paper we introduce the DP-FTRL algorithm, which we show to have the tightest known regret guarantees
under DP, and have the best known excess population risk guarantees for a single pass algorithm on non-smooth
convex losses. For linear and least-squared losses, we show DP-FTRL actually achieves the optimal population risk.
Furthermore, we show on benchmark data sets that DP-FTRL, which does not rely on any privacy amplification, can
outperform amplified DP-SGD at large values of ε, and be competitive to it for all ranges of ε for a modest increase in
computation cost (batch size). This work leaves two main open questions: i) Can DP-FTRL achieve the optimal excess
population risk for all convex losses in a single pass?, and ii) Can one tighten the empirical gap between DP-SGD and
DP-FTRL at smaller values of ε, possibly via a better estimator of the gradient sums from the tree data structure?
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[55] N. Papernot, A. Thakurta, S. Song, S. Chien, and Ú. Erlingsson. Tempered sigmoid activations for deep learning
with differential privacy. arXiv preprint arXiv:2007.14191, 2020.

[56] V. Pichapati, A. T. Suresh, F. X. Yu, S. J. Reddi, and S. Kumar. Adaclip: Adaptive clipping for private sgd. arXiv
preprint arXiv:1908.07643, 2019.

[57] S. Ramaswamy, O. Thakkar, R. Mathews, G. Andrew, H. B. McMahan, and F. Beaufays. Training production
language models without memorizing user data, 2020.

[58] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and H. B. McMahan. Adaptive
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A Other Related Work
Differentially private empirical risk minimization (ERM) and private online learning are well-studied areas in the
privacy literature [1, 2, 3, 6, 8, 15, 29, 34, 36, 37, 41, 49, 55, 56, 63, 65, 66, 71]7. The connection between private
ERM and private online learning was first explored in [37], and the idea of using stability induced by differential
privacy for designing low-regret algorithms was explored in [2, 3, 39]. To the best of our knowledge, this paper for the
first time explores the idea using a purely online learning algorithm for training deep learning models, without relying
on any stochasticity in the data for privacy.

B Missing Details from Section 3

B.1 Details of the Tree Aggregation Scheme
In this section we provide the formal details of the tree aggregation scheme used in Algorithm 1 (Algorithm AFTRL).

1. InitializeTree (n, σ2, L): Initialize a complete binary tree T with 2dlg(n)e leaf nodes, with each node
being sampled i.i.d. from N (0, L2σ2 · Ip×p).

2. AddToTree (T , t,v): Add v to all the nodes along the path to the root of T , starting from t-th leaf node.

3. GetSum (T , t): Let [node1, . . . ,nodeh] be the list of nodes from the t-th leaf node to the root of T , with
node1 being the root node and nodeh being the leaf node.

7This is only a small representative subset of the literature.

15

http://arxiv.org/abs/1905.03871


(a) Initialize s ← 0p and convert t to binary in h bit representation [b1, . . . , bh], with b1 being the most
significant bit.

(b) For each j ∈ [h], if bj = 1, then add the value in left sibling of nodej to s. Here if nodej is the left child,
then it is treated as its own left sibling.

(c) Return s.

B.2 Proof of Theorem 3.1
Proof. Notice that in Algorithm 1, all accesses to private information is only through the tree data structure T . Hence,
to prove the privacy guarantee, it is sufficient to show that for any data set V = {v1, . . . ,vn} (with each ‖vi‖2 ≤
L), the operations on the tree data structure (i.e., the InitializeTree , AddToTree , GetSum ) provide the
privacy guarantees in the Theorem statement. First, notice that each vi affects at most dlg(n)e nodes in the tree T .
Additionally, notice that the computation in each node of the tree T is essentially a summation query. With these
two observations, one can use standard properties of Gaussian mechanism [21],[51, Corollary 3], and adaptive RDP
composition [51, Proposition1] to complete the proof.

While the original work on tree aggregation [14, 23] did not use either Gaussian mechanism or RDP composition,
it is not hard to observe that the translation to the current setting is immediate.

B.3 Missing details from Section 3.2 (Comparing Noise in DP-SGD and DP-FTRL)
Theorem B.1. Consider data set D = {d1, . . . , dn}, model space C = Rp and initial model θ0 = 0p. For t ∈ [n], let

the update of Noisy-SGD be θNoisy-SGD
t+1 ← θt−η·

(
∇θ`

(
θNoisy-SGD
t ; dt

)
+ at

)
, where at’s are noise random variables.

Let the DP-FTRL (Algorithm 1) updates be θDP-FTRL
t+1 ← arg min

θ∈Rp

t∑
i=1

∇θ`
(
θDP-FTRL
i ; di

)
+ 〈bt, θ〉 + 1

2η ‖θ‖
2
2, where

bt’s are the noises added by the tree-aggregation mechanism.
If we instantiate at = bt − bt−1, and η = 1

λ , then for all t ∈ [n], θNoisy-SGD
t = θDP-FTRL

t .

Proof. Consider the non-private SGD and FTRL. Recall that the SGD update is θSGDt+1 ← θSGDt − η∇θ`(θSGDt ; dt),

where η is the learning rate. Opening up the recurrence, we have θSGDt+1 ← θ0 − η
t∑
i=1

∇θ`(θSGDi ; di). If θSGD0 = 0p,

then equivalently θSGDt+1 ← arg min
θ∈Rp

〈
t∑
i=1

∇θ`(θSGDi ; di), θ〉 + 1
2η ‖θ‖

2
2. This is identical to the update rule of the non-

private FTRL (i.e., with σ set to 0 in DP-FTRL) with regularization parameter λ set to 1
η .

Now we consider the Noisy-SGD and DP-FTRL. Recall that Noisy-SGD has update rule θNoisy-SGD
t+1 ← θNoisy-SGD

t −
η
(
∇θ`(θNoisy-SGD

t ; dt) + at

)
, where at is the Gaussian noise added at time step t. Similar as before, this rule can be

written as

θNoisy-SGD
t+1 ← arg min

θ∈Rp

〈
t∑
i=1

∇θ`(θNoisy-SGD
i ; di), θ〉+ 〈

t∑
i=1

ai, θ〉+
1

2η
‖θ‖22 . (3)

The update rule of DP-FTRL can be written as

θDP-FTRL
t+1 ← arg min

θ∈Rp

〈
t∑
i=1

∇θ`
(
θDP-FTRL
i ; di

)
, θ〉+ 〈bt, θ〉+

λ

2
‖θ‖22 , (4)

where bt is the noise that gets added by the tree-aggregation mechanism at time step t+ 1. If we 1) set λ = 1
η , 2) draw

data samples sequentially from D in Noisy-SGD, and 3) set at = bt − bt−1 so that
t∑
i=1

at = bt, we can establish the

equivalence between (3) and (4). This completes the proof.
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C Missing Details from Section 4

C.1 Proof of Theorem 4.1
We first present a more detailed version of Theorem 4.1 and then present its proof.

Theorem C.1 (Regret guarantee (Theorem 4.1 in detail)). Let [θ1, . . . , θn] be the outputs of Algorithm AFTRL (Algo-
rithm 1), and L be a bound on the `2-Lipschitz constant of the loss functions. W.p. at least 1− β over the randomness
of AFTRL, the following is true for any θ∗ ∈ C.

1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt) ≤
Lσ
√
pdlg ne ln(n/β) + L2

λ
+

λ

2n

(
‖θ∗‖22 − ‖θ1‖

2
2

)
Setting λ optimally and plugging in the noise scale σ from Theorem 3.1 to ensure (ε, δ)-differential privacy, we have

RD(AFTRL; θ∗) = O

L ‖θ∗‖2 ·
 1√

n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

 .

Proof. Recall that by Algorithm AFTRL, θt+1 ← arg min
θ∈C

t∑
i=1

〈∇i, θ〉+
λ

2
‖θ‖22 + 〈bt, θ〉︸ ︷︷ ︸

Jpriv
t (θ)

, where the Gaussian noise

bt = st−
t∑
i=1

∇i for st being the output of GetSum (T , t). By standard concentration of spherical Gaussians, w.p. at

least 1 − β, ∀t ∈ [n], ‖bt‖2 ≤ Lσ
√
pdlg(n)e ln(n/β). We will use this bound to control the error introduced due to

privacy. Now, consider the optimizer of the non-private objective:

θ̃t+1 ← arg min
θ∈C

t∑
i=1

〈∇i, θ〉+
λ

2
‖θ‖22︸ ︷︷ ︸

Jnp
t (θ)

, where∇t = ∇`(θt; dt).

That is, post-hoc we consider the hypothetical application of non-private FTRL to the same sequence of linearized
loss functions ft(θ̃) = 〈∇t, θ̃〉 = 〈∇`(θt; dt), θ̃〉 seen in the private training run. In the following, we will first bound
how much the models output by AFTRL deviate from models output by the hypothetical non-private FTRL discussed
above. Then, we invoke standard regret bound for FTRL, while accounting for the deviation of the models output by
AFTRL.

To bound
∥∥∥θ̃t+1 − θt+1

∥∥∥
2
, we apply Lemma C.2. We set φ1(θ) = Jnp

t (θ)/λ, φ2(θ) = Jpriv
t (θ)/λ, and both ‖ · ‖

and its dual as the `2 norm. We thus have Ψ(θ) = 〈bt, θ〉/λ, with bt/λ being its subgradient. Therefore,∥∥∥θ̃t+1 − θt+1

∥∥∥
2
≤
‖bt‖2
λ

. (5)

Lemma C.2 (Lemma 7 from [46] restated). Let φ1 : C → R be a convex function (defined over C ⊆ Rp) s.t.
θ1 ∈ arg min

θ∈C
φ1(θ) exists. Let Ψ(θ) be a convex function s.t. φ2(θ) = φ1(θ) + Ψ(θ) is 1-strongly convex w.r.t. ‖ · ‖-

norm. Let θ2 ∈ arg min
θ∈C

φ2(θ). Then for any b in the subgradient of Ψ at θ1, the following is true: ‖θ1−θ2‖∗ ≤ ‖b‖∗.

Here ‖ · ‖∗ is the dual-norm of ‖ · ‖.
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We can now easily bound the regret. By standard linear approximation “trick” from the online learning litera-
ture [32, 60], we have the following. For∇t = ∇θ`(θt; dt),

1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt) ≤
1

n

n∑
t=1

〈∇t, θt − θ∗〉

=
1

n

n∑
t=1

〈∇t, θt − θ̃t + θ̃t − θ∗〉

=
1

n

n∑
t=1

〈∇t, θ̃t − θ∗〉︸ ︷︷ ︸
A

+
1

n

n∑
t=1

〈∇t, θt − θ̃t〉︸ ︷︷ ︸
B

. (6)

One can bound the term A in (6) by [32, Theorem 5.2] and get A ≤
(
L2

λ + λ
2n

(
‖θ∗‖22 − ‖θ1‖

2
2

))
. As for term B,

using (5) and the concentration on bt mentioned earlier, we have, w.p. at least 1− β,

B ≤ 1

n

n∑
t=1

‖∇t‖2 ·
∥∥∥θ̃t − θt∥∥∥

2
≤ 1

n

n∑
t=1

L ·
∥∥∥θ̃t − θt∥∥∥

2
≤
Lσ
√
pdlg ne ln(n/β)

λ
. (7)

Combining (6) and (7), we immediately have the first part of of Theorem 4.1. To prove the second part of the theorem,
we just optimize for the regularization parameter λ and plug in the noise scale σ from Theorem 3.1.

C.2 Additional Details for Section 4.2
In Algorithm 2, we present a version of DP-FTRL for least square loss. In this modified algorithm, the functions
InitializeTreeBias , AddToTreeBias , and GetSumBias are identical to InitializeTree , AddToTree ,
and GetSum respectively in Algorithm 1. The functions AddToTreeCov , AddToTreeCov , and GetSumCov
are similar to InitializeTree , AddToTree , and GetSum , except that the p-dimensional vector versions are
replaced by p × p-dimensional matrix version, and the noise in InitializeTreeCov is initialized by symmetric
p× p Gaussian matrices with each entry drawn i.i.d. from N

(
0, L4σ2

)
.

Algorithm 2 AFTRL-LS: Differentially Private Follow-The-Regularized-Leader (DP-FTRL) for least-squared losses

Require: Data set: D = {(x1, y1), · · · , (xn, yn)} arriving in a stream, constraint set: C, noise scale: σ, regularization
parameter: λ, upper bound on {‖xt‖2}

n
t=1

: L.
1: θ1 ← arg min

θ∈C

λ
2 ‖θ‖

2
2. Output θ1.

2: Tbias ← InitializeTreeBias (n, σ2, L), Tcov ← InitializeTreeCov (n, σ2, L2).
3: for t ∈ [n] do
4: Let vt ← yt · xt, and Mt ← xtx

>
t .

5: Tbias ← AddToTreeBias (Tbias, t,vt) and Tcov ← AddToTreeCov (Tcov, t,Mt).
6: st ← GetSumBias (Tbias, t), and Wt ← GetSumCov (Tcov, t).
7: θt+1 ← arg min

θ∈C

(
θ> ·Wt · θ − 2〈st, θ〉

)
+ λ

2 ‖θ‖
2
2. Output θt+1.

8: end for

We first present the privacy guarantee of Algorithm 2 in Theorem C.3. Its proof is almost identical to that of
Theorem 3.1, except that we need to measure the sensitivity of the covariance matrix in the Frobenius norm.

Theorem C.3 (Privacy guarantee). If ‖x‖2 ≤ L and |y| ≤ 1 for all (x, y) ∈ D and θ ∈ C, then Algorithm 1

(Algorithm AFTRL) satisfies
(
α, αdlg(n)eσ2

)
-RDP. Correspondingly, by setting σ =

2
√
dlg(n)e ln(1/δ)

ε one can satisfy

(ε, δ)-differential privacy guarantee, as long as ε ≤ 2 ln(1/δ).
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In Theorem C.4, we present the regret guarantee for Algorithm 2.

Theorem C.4 (Stochastic regret for least-squared losses). Let D = {(x1, y1), . . . , (xn, yn)} ∈ Dn be a data set
drawn i.i.d. from τ , with L = max

x∈D
‖x‖2 and max

y∼D
|y| ≤ 1. Let C be the model space and µ = max

θ∈C
‖θ‖2. Let θ∗ be

any model in C, and [θ1, . . . , θn] be the outputs of Algorithm AFTRL-LS (Algorithm 2). Then w.p. at least 1 − β (over
the randomness of the algorithm), we have

ED [RD(AFTRL-LS; θ∗)] = ED

[
1

n

n∑
t=1

(yt − 〈xt, θt〉)2 − (yt − 〈xt, θ∗〉)2
]

=O

(
p ln2(n) ln(n/β)σ2 ·

(
L2 + L4µ2 + L3µ

)
λn

+
L4µ2

λ
+
λ ln(n)

n
· ‖θ∗‖22

)
.

Setting λ optimally and plugging in the noise scale σ from Theorem C.3 to ensure (ε, δ)-differential privacy, we have,

ED [RD(AFTRL-LS; θ∗)] = L2 · ‖θ∗‖2 ·O

√µ2 ln(n)

n
+

√
p ln5(n/β) · ln(1/δ) ·max{µ, µ2}

εn

 .

Proof. Consider the following regret function: RD(AFTRL-LS; θ∗) = 1
n

n∑
t=1

(
(yt − 〈θt,xt〉)2 − (yt − 〈θ,xt〉)2

)
. We

will bound ED [RD(AFTRL-LS; θ∗)]. Following the notation in the proof of Theorem 4.1, recall the following two
functions.

• θt+1 ← arg min
θ∈C

t∑
i=1

(
θ>xix

>
i θ − 2yi〈xi, θ〉

)
+
λ

2
‖θ‖22 + 〈bt, θ〉+ θ>Btθ︸ ︷︷ ︸

Jpriv
t (θ)

, where the noise bt =
t∑
i=1

yixi−st

with st being the output of GetSumBias (Tbias, t), and the noise Bt = Wt −
t∑
i=1

xix
>
i with Wt being the

output of GetSumCov (Tcov, t). By standard bound on Gaussian random variables, w.p. at least 1−β, ∀t ∈ [n],
‖bt‖2 = O

(
Lσ
√
p ln(n) ln(n/β)

)
and ‖Bt‖2 = O

(
L2σ

√
p ln(n) ln(n/β)

)
. We will use this bound to

control the error introduced due to privacy.

• θ̃t+1 ← arg min
θ∈C

t∑
i=1

(
θ>xix

>
i θ − 2yi〈xi, θ〉

)
+
λ

2
‖θ‖22︸ ︷︷ ︸

Jnp
t (θ)

.

By an analogous argument to (5) in the proof of Theorem 4.1, we have∥∥∥θ̃t+1 − θt+1

∥∥∥
2

= O

(
Lσ + L2σ · µ

λ
·
√
p ln(n) ln(n/β)

)
. (8)

Therefore,

Jnp
t (θ̃t+1) + 〈bt, θ̃t+1〉+ θ̃>t+1Btθ̃t+1 ≥ Jnp

t (θt+1) + 〈bt, θt+1〉+ θ>t+1Btθt+1︸ ︷︷ ︸
Jpriv
t (θt+1)

+
λ

2

∥∥∥θ̃t+1 − θt+1

∥∥∥2
2

(9)

⇒ Jnp
t (θt+1)− Jnp

t (θ̃t+1) = O
(
‖bt‖2 ·

∥∥∥θ̃t+1 − θt+1

∥∥∥
2

+ ‖Bt‖2 ·
∥∥∥θ̃t+1 − θt+1

∥∥∥
2
· µ
)

(10)

⇒ Jnp
t (θt+1)− Jnp

t (θ̃t+1) = O

(
(p ln(n) ln(n/β)σ2) · L

2 + L4µ2 + L3µ

λ

)
. (11)
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(9) follows from the strong convexity of Jpriv
t and the fact that that θt+1 is the minimizer of Jpriv

t . (10) follows from the
bounds on ‖bt‖2, ‖Bt‖2, and (8). We now use Theorem 2 from [61] to bound E(x,y)∼D

[
(y − 〈x, θt+1〉)2 + λ

2 ‖θt+1‖22
]
−

E(x,y)∼D

[
(y − 〈x, θ∗〉)2 + λ

2 ‖θ
∗‖22
]

for any θ∗ ∈ C.
Using Theorem 2 from [61] and (11), we have that w.p. at least 1− β over the randomness of the algorithm,

E(x,y)∼τ

[
(y − 〈x, θt+1〉)2 +

λ

2
‖θt+1‖22

]
− E(x,y)∼τ

[
(y − 〈x, θ∗〉)2 +

λ

2
‖θ∗‖22

]
≤ 2

t
· E
[
Jnp
t (θt+1)− Jnp

t

(
θ̃t+1

)]
+O

(
L4µ2

λ

)
= O

(
(p ln(n) ln(n/β))σ2) · L

2 + L4µ2 + L3µ

λt
+
L4µ2

λ

)
. (12)

(12) immediately implies the following:

ED [RD(AFTRL-LS; θ∗)] = O

((
p ln2(n) ln(n/β)σ2

) L2 + L4µ2 + L3µ

λn
+
L4µ2

λ
+
λ ln(n)

n
· ‖θ∗‖22

)
. (13)

We get the regret guarantee in Theorem C.4 by optimizing for λ.

C.3 Formal Statement of Online-to-batch Conversion for Excess Population Risk
Theorem C.5 (Corollary to Theorem 4.1 and [61]). Recall the setting of parameters from Theorem 4.1, and let

θpriv = 1
n

n∑
t=1

θt (where [θ1, . . . , θn] are outputs of Algorithm AFTRL (Algorithm 1). If the data set D is drawn i.i.d.

from the distribution τ , then we have that w.p. at least 1− β (over the randomness of the algorithm AFTRL),

ED
[
PopRisk(θpriv )

]
= Lµ ·O

√ ln(1/β)

n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

 .

Here, µ = max
θ∈C
‖θ‖2 is an upper bound on the norm of any model in C.

D Multi-pass and Mini-batch DP-FTRL
We introduce two extensions to Algorithm AFTRL (Algorithm 1) that we will use for our empirical evaluation: i)
Multi-pass, and ii) Mini-batching. While DP-FTRL (Algorithm 1) is stated for a single epoch of training, i.e., where
each sample in the data set is used once for obtaining a gradient update, there can be situations where E > 1 epochs
of training are preferred. There are two natural ways that Algorithm 1 can be extended to the following.
DP-FTRL with Tree Restart (DP-FTRL-TR): Restarting the tree at every epoch of training. Since this amounts
to adaptive composition of Algorithm 2 for E times, the privacy guarantee for this method can be obtained from
Theorem 3.1 and the adaptive sequential composition property of RDP [51].

Theorem D.1 (Privacy guarantee for DP-FTRL-TR). If ‖∇θ`(θ; d)‖2 ≤ L for all d ∈ D and θ ∈ C, then DP-FTRL

(Algorithm 1) with Tree Restart (DP-FTRL-TR) for E epochs satisfies
(
α, αEL

2dlg(n)e
2σ2

)
-RDP. Correspondingly, by

setting σ =

√
EL2dlg(n)e ln(1/δ)

ε one can satisfy (ε, δ)-differential privacy guarantee, as long as ε ≤ 2 ln(1/δ).

DP-FTRL with No Tree Restart (DP-FTRL-NTR): Build a single tree for all the E epochs of training.

Theorem D.2 (Privacy guarantee for DP-FTRL-NTR). If ‖∇θ`(θ; d)‖2 ≤ L for all d ∈ D and θ ∈ C, then DP-FTRL

(Algorithm 1) with No Tree Restart (DP-FTRL-NTR) forE epochs satisfies
(
α, αEL

2dlg(nE)e
2σ2

)
-RDP. Correspondingly,

by setting σ =

√
EL2dlg(nE)e ln(1/δ)

ε one can satisfy (ε, δ)-differential privacy guarantee, as long as ε ≤ 2 ln(1/δ).
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The proof of Theorem D.2 follows from that of Theorem 3.1, and the additional observation that any aggregation
step can involve at most E gradients from any data sample d ∈ D, which results in

∥∥∥∑e∈[E]∇θ`e(θ; d)
∥∥∥
2
≤ EL

from the triangle inequality. Another difference in the proof is that any data sample d ∈ D now can affect dlg(nE)e
nodes of the tree T .
Mini-batch DP-FTRL: So far, for simplicity we have focused on DP-FTRL with model updates corresponding to
new gradient from a single sample. However, in practice, instead of computing the gradient on a single data sample dt

at time step t, we will estimate gradient over a batch Mt =
{
d
(1)
t , . . . , d

(k)
t

}
as∇t = 1

k

k∑
i=1

clip
(
∇θ`

(
θt; d

(1)
t

)
, L
)

.

This immediately implies the number of steps per epoch to be dn/ke. Furthermore, since the `2-sensitivity in each
batch gets scaled down to L

k instead of L (as in Algorithm AFTRL). W will take the above two observations into
consideration in our privacy accounting accordingly.

E Omitted Details for Experiment Setup (Section 5.1)

E.1 Additional Details on Model Architectures
Table 2a shows the model architecture for MNIST and EMNIST, Table 2b shows that for CIFAR-10, and Table 2c
shows the neural networks adopted from [58].

Table 2: Model architectures for all experiments.

(a) Model architecture for MNIST and EMNIST.

Layer Parameters

Convolution 16 filters of 8× 8, strides 2
Convolution 32 filters of 4× 4, strides 2

Fully connected 32 units
Softmax -

(b) Model architecture for CIFAR-10.

Layer Parameters

Convolution ×2 32 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 64 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 128 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Fully connected 128 units
Softmax -

(c) Model architecture for StackOverflow. [58]

Layer Output Shape Parameters

Input 20 0
Embedding (20, 96) 960384

LSTM (20,670) 2055560
Dense (20, 96) 64416
Dense (20, 10004) 970388

Softmax - -

E.2 Comparison of Optimizers with their Momentum Variants
Figure 3 shows an comparison between the original and the momentum versions of DP-FTRL and DP-SGD on the
three centralized example-level DP image classification tasks. We can see that for any privacy level, the utility of DP-
SGD is at least that of DP-SGDM (sometimes even more). Moreover, we see that DP-FTRLM always outperforms
DP-FTRL.

The experiments in Table 3 and Figure 4 show the advantages of the momentum variant for the federated Stack-
Overflow task in practice. We compare DP-SGD and its momentum variant DP-SGDM, DP-FTRL and its momentum
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Figure 3: Final test accuracy vs. privacy (example-level ε) for various noise multipliers. DP-FTRLM outperforms
DP-FTRL, and DP-SGD is always not worse than DP-SGDM.

variant DP-FTRLM under two different privacy epsilons. Privacy epsilon is infinite when noise multiplier is zero;
privacy epsilon is 8.53 when noise multiplier is 0.4 for DP-SGD and DP-SGDM; privacy epsilon is 8.5 when noise
multiplier is 2.33 for DP-FTRL and DP-FTRLM. We tune and select the hyperparameter with the best validation ac-
curacy 8. We then run the experiment with the specific set of hyperparameters for five times to estimate mean and
standard deviation of the accuracy.

The momentum variant helps in two ways for StackOverflow: momentum significantly improve the performance
of both SGD and FTRL when the noise is relatively small; moreover, momentum stabilizes DP-FTRL when the
noise is relatively large. Note that the tree aggregation method in DP-FTRL use different privacy calculation method
compared to DP-SGD. A relatively large noise multiplier has to be used to achieve the same privacy ε guarantee. While
tree aggregation in DP-FTRL exploits the O(log n) accumulated noise, it also introduces unstable jump for the noise
added in each round, which could be mitigated by the momentum γ introduced in DP-FTRLM. In the experiments of
StackOverflow, we will always use the momentum variant unless otherwise specified.

F Omitted Details for Experiments in Section 5.2

F.1 Details of Hyperparameter Tuning
Image classification experiments For the three image classification experiments, we tune the learning rate (1/λ for
FTRL) over a grid of the form ∪i∈{−3,−2,...,3}{10i, 2 × 10i, 5 × 10i}, selecting the value that achieves the highest
test accuracy averaged over the last 5 epochs while ensuring this chosen value is not an endpoint of the grid. We use a
clipping norm 1.0 for all the image classification experiments following previous work [54].

The parameter search for non-private baseline is the same as that for the DP algorithms. We use regular SGD (with

8The accuracy for StackOverflow next word prediction task excludes the end of sequence symbol and the out of vocabulary symbol following
[58]. The hyperparameters tuning range are described in Appendix F.1.
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Server Optimizer Epsilon Accuracy Hyperparameters
Validation Test ServerLR ClientLR Clip

DP-SGD

∞

19.62 ± .12 20.99 ± .11 3 0.5 1
DP-SGDM 23.87 ± .22 24.89 ± .27 3 0.5 1
DP-FTRL 19.95 ± .05 21.12 ± .14 3 0.5 1

DP-FTRLM 23.89 ± .03 25.15 ± .07 3 0.5 1
DP-SGD 8.53 16.83 ± .05 18.25 ± .05 3 0.5 0.3

DP-SGDM 16.92 ± .03 18.27 ± .04 0.1 0.5 1
DP-FTRL 8.50 15.04 ± .16 15.46 ± .39 3 0.5 0.3

DP-FTRLM 17.78 ± .08 18.86 ± .15 1 0.5 0.3

Table 3: Validation and test accuracy for the StackOverflow next word prediction task. Each experiment is run five
times to calculate the mean and standard deviation. The momentum variant DP-FTRLM performs better than DP-
FTRL.

(a) Privacy epsilon∞ (b) Privacy epsilon ∼ 8.5

Figure 4: Training curves show validation accuracy of StackOverflow. The curve of the best validation accuracy out
of the five runs is presented. The momentum variant converges faster and performs better.

and without momentum) for the image classification tasks. The chosen hyperparameters and privacy parameters are
summarized in Table 6.

StackOverflow experiments The StackOverflow benchmark dataset of the next word prediction task has 342,477
users (clients) with training 135,818,730 examples. A validation set of 10,000 examples, and a test set of 16,576,035
examples are constructed following [58]. The one layer LSTM described in [58] is used. We compare with DP-FedAvg
where DP-SGD is used on server.

There are many hyperparameters in federated learning. We fix the number of total rounds to be 1,600 for Stack-
Overflow, and sample 100 clients per round for DP-SGD, and take 100 clients from the shuffled clients for DP-FTRL
to make sure the clients are disjoint across rounds. Note that DP-FTRL would run less than one epoch for StackOver-
flow. On each client, the number of local epochs is fixed to be one and the batch size is sixteen, and we constrained
the maximum number of samples on each client to be 256. The momentum for both DP-SGDM and DP-FTRLM is
fixed to 0.9.

In most of the experiments, we will tune server learning rate, client learning rate and clip norm for a certain
noise multiplier. We tune a relative large grid (client learning rate in {0.1, 0.2, 0.5, 1, 2}, server learning rate in
{0.03, 0.1, 0.3, 1, 3}, clip norm in {0.1, 0.3, 1, 3, 10}) when the noise multiplier is zero. And we have several obser-
vation: the best accuracy of clip norm 0.3 and 1.0 are slightly better than larger clip norms, which suggests that clip
norm could generally help for this language task; increasing server learning rate could complement decreasing clip
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norm when clip norm is effective; the largest client learning rate that does not diverge often leads to good final accu-
racy. As adding noise increases the variance of gradients, we often have to decrease learning rate in practice. Based
on this heuristic and the observation from tuning when noise multiplier is zero, we choose client learning rate from
{0.1, 0.2, 0.5}, server learning rate from {0.1, 0.3, 1, 3} and clip norm from {0.3, 1, 3} unless otherwise specified. We
use DP-SGD with zero noise for StackOverflow, as gradient clipping can improves accuracy for language tasks.

F.2 Omitted Details for Image Classification Experiments
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Figure 5: Final test accuracy vs. ε. The lines show the mean and standard deviation over 5 runs. Top row shows the
full plot of Figure 1. Bottom row shows only the comparison between DP-FTRL and DP-SGD with amplification.

In Figure 5, we plot a comparison between DP-FTRL and DP-SGD with amplification for two batch sizes, i.e., in
addition to the curves in Figure 1, we plot the DP-SGD with amplification at the higher batch size. We can see that
for both batch sizes, DP-SGD with amplification outperform DP-FTRLM at small ε, while DP-FTRLM outperforms
DP-SGD when ε increases.

One might notice that the crossover point at which DP-FTRLM starts to outperform DP-SGD changes with batch
size, and one might wonder if the point should shift to the left or right as batch size increases. We can see the crossover
point shifts to the left for CIFAR-10, shifts to the right for EMNIST, and remains roughly the same for MNIST. We
conjecture that the direction of shift would highly depends on the batch size and the number of training examples,
which affect the privacy amplification analysis. When the ratio between the batch size and the training set size is
small, we would likely see a shifting towards the right; and when the ratio is larger, we would likely observe a left
shifting. This can be backed up by Figure 8, where we can see the two ε-batch curves for a specific accuracy α crossing
at two points. Denote the crossing points as (b1, ε1) and (b2, ε2). We know that for batch size b1 (or b2), if we plot the
accuracy-ε curves for DP-SGD and DP-FTRL as in Figure 1, we would see the crossover points at ε1 (or ε2).

Now we consider batch size b3 ' b1 that corresponds to privacy levels εS3 for DP-SGD and εF3 for DP-FTRL. From
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the shape of the curves, we have εS3 < εF3 ≈ ε1. Considering the accuracy-ε curve for b3, we know that DP-SGD
has reached accuracy α at εS3 while DP-FTRL only reaches α at a larger privacy level εF3 . Therefore, we know that at
εF3 ≈ ε2, DP-SGD still reaches higher accuracy than DP-FTRL, i.e., the crossover has not yet happen at this privacy
level. Therefore, when we increase batch size from b1 to b3, we would likely see the crossover point shifting toward
the right.

Then we consider batch size b4 ' b2 that corresponds to privacy levels εS4 for DP-SGD and εF4 for DP-FTRL.
As the DP-SGD curve is pretty flat in this regime, we have ε2 > εS4 > εF4 . Considering the accuracy-ε curve for
b4, we know that DP-FTRL has reached accuracy α at εF4 while DP-SGD only reaches α at a larger privacy level εS4 .
Therefore, we know that at εF4 , DP-FTRL have already reached a higher accuracy than DP-SGD, i.e., the crossover
has already happened before εF4 . Therefore, when we increase batch size from b2 to b4, we would see the crossover
point shifting toward the left.

F.3 Omitted Details for StackOverflow Experiments
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Figure 6: Test and Validation accuracy for the StackOverflow next word prediction task under different privacy epsilon
by varying noise multipliers.

Server Optimizer Epsilon Accuracy Hyperparameters
Validation Test Noise ServerLR ClientLR Clip

DP-SGDM 19.74 17.52 18.89 0.3 1 0.5 0.3
DP-FTRLM 19.74 19.49 20.47 1.13 0.3 0.5 1
DP-SGDM 8.53 16.94 18.30 0.4 0.1 0.5 1
DP-FTRLM 8.50 18.16 19.16 2.33 1 0.5 0.3
DP-SGDM 4.66 16.39 17.94 0.5 0.3 0.5 0.3
DP-FTRLM 4.66 16.09 16.97 4.03 0.1 0.5 1
DP-SGDM 2.95 16.08 17.48 0.6 0.3 0.5 0.3
DP-FTRLM 2.95 14.87 15.60 6.21 0.3 0.5 0.3
DP-SGDM 2.05 15.78 17.13 0.7 0.3 0.5 0.3
DP-FTRLM 2.04 13.06 13.16 8.83 0.3 0.2 0.3

Table 4: Validation and test accuracy for the StackOverflow next word prediction task under different privacy epsilon.

We compare the accuracy of the momentum variant of DP-FTRL with the momentum variant of DP-SGD as
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baseline under different privacy epsilon. We tune hyperparameters as described in Appendix F.1 and select the hyper-
parameters achieve the best validation accuracy for StackOverflow (see Table 4 and Figure 6). DP-FTRLM performs
better than DP-SGDM when the epsilon is relatively large, but performs worse when the epsilon is small. More noise
are added to DP-FTRLM to achieve the same privacy epsilon as DP-SGDM. However, DP-FTRLM can result in utility
(accuracy) not (much) worse than DP-SGDM without relying on amplification by sampling, which makes it appealing
for practical federated learning setting where population and sampling is difficult to estimate [5]. Note that the noise
added for both DP-FTRLM and DP-SGDM are considered large for federated learning tasks. The effective noise could
be significantly reduced by sampling more clients each round in practice [49], and more discussion on this front is in
Appendix G.

G Omitted Details for Experiments in Section 5.3

G.1 Effect of batch size for privacy/computation trade-offs
We set a target utility level based on what might be achieved at large ε in Figure 1, and examine if increasing batch
size can lead to better privacy-utility trade-offs.

First, for all three datasets, Figure 7 shows the accuracy trajectories of three different batch sizes with scaled noise,
i.e., for batch sizes b1, b2, b3 and noise σ1, σ2, σ3, we have σ1/b1 = σ2/b2 = σ3/b3. We can observe that for
both FTRL with momentum and DP-SGD, the training trajectories for noise and batch size pairs (b1, σ1), (b2, σ2),
and (b3, σ3) are roughly the same. Notice that different (bi, σi) leads to different ε values. The hyperparameters and
privacy parameters in the experiments can be found in Table 6.

As we have confirmed that scaling the batch size and noise together does not affect the accuracy, in Figure 8, we
plot the ε value versus batch size b such that σ/b is a fixed value. We can see that as batch size grows, FTRL achieves
better privacy than DP-SGD at the same level of accuracy.

G.2 Details of Hyperparameter Tuning
In Appendix F.3, a significant amount of noise has to be added in both DP-FTRLM and DP-SGDM to achieve nontrivial
privacy epsilons, which leads to undesired accuracy degradation. For example, the test accuracy of DP-FTRLM on
StackOverflow dataset decreases from 25.15% when ε =∞ to 18.86% when ε = 8.5 when the number of clients per
round is fixed at 100. In practical federated learning tasks, the total population is very large and many more clients
could be sampled every round. In this section, taking StackOverflow as an example, we study the minimum number
of sampled clients per round (report goal in [11]) to achieve a target accuracy under certain privacy budget.

Fix the clip norm and client learning rate to reduce hyperparameter tuning complexity. We first find the largest
noise multiplier that would meet the target accuracy based on selecting 100 clients per round. As an extensive grid
search over noise multiplier while simultaneously tuning server learning rate, client learning rate and clip norm is
computationally intensive, we fix the clip norm to 1 and the client learning rate to 0.5 based on Figure 9. We then tune
the server learning rate from {0.3, 1, 3} for each noise multiplier.

Grid search for the largest noise multiplier to meet the target. We use a grid of ten noise multipliers between 0
(ε = ∞, test accuracy=24.89) and 0.3 (ε = 18.89, test accuracy=18.89) for DP-SGDM, and between 0 (ε = ∞, test
accuracy=25.15) and 1.13 (ε = 19.74, test accuracy=20.47) for DP-FTRLM. And we further add five noise multipliers
between 0 and 0.035 for DP-SGDM, and between 0 and 0.149 for DP-FTRLM based on the results of the previous
grid search on ten noise multipliers. The test accuracy is presented in Figure 2b. We set the target test accuracy as
24.5% and select noise multiplier 0.007 (with server learning rate 3) for DP-SGDM and noise multiplier 0.067 (with
server learning rate 3) for DP-FTRLM.

Report goal for the nontrivial privacy epsilon in practice. The standard deviation of noise added in each round
is proportional to the inverse of the number of clients per round (report goal). The practical federated learning tasks
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Figure 7: Batch size with noise scaled proportionally (so the amount of noise in the average gradient remains constant)
does not affect accuracy. Thus, we can use a single run with a given noise level σ and batch size b to estimate the
accuracy we would get with noise level ασ and batch size αb for small α.
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Figure 8: ε vs. batch size. According to Figure 7, DP-FTRL and DP-SGD with the corresponding noises achieve
roughly the same accuracy.
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(a) SGDM with zero noise (b) FTRLM with zero noise

Figure 9: Training curve of the best validation accuracy under various clip norm for StackOverflow.

often have a very large population and report goal, and we could simultaneously increase the noise multiplier and
report goal, so that the utility (accuracy for classification and prediction tasks) will likely not degrade [49] while the
privacy guarantee is improved. The validation accuracy of simulation performance with two different report goals for
StackOverflow is presented in Figure 10. The noise multiplier 0.067 is used for DP-FTRLM and 0.007 is used for
DP-SGD when report goal is 100, which is the largest noise multiplier to meet the target test accuracy determined by
Figure 2b. We run each experiment for five times and plot the curves for the median validation accuracy, the corre-
sponding test accuracy are 24.73% for DP-SGDM and 24.63% for DP-FTRLM. We then run the same experiments
with report goal of 1000, and proportionally increase the corresponding noise multiplier to be 0.67 for DP-FTRLM
and 0.07 for DP-SGDM. The performance of 1000 report goal is slightly better with test accuracy 25.19% for DP-
SGDM and 24.97% for DP-FTRLM. We will assume the utility will not decrease if report goal and noise multiplier
are simultaneously and proportionally increased.

As shown in Table 5, both report goals 100 and 1000 would provide trivial privacy guarantee of large epsilon
for the target utility. We have to increase the report goal to 2.06e4 to get a nontrivial privacy epsilon (less than 10)
with DP-FTRLM and the StackOverflow population of 3.42e5 9. Smaller report goal could achieve similar privacy
guarantee if the population becomes larger. In Figure 2c, the relationship between privacy guarantee and report goal
for DP-FTRLM and DP-SGDM are presented. DP-FTRLM provides better privacy guarantee by smaller report goal
when the privacy epsilon is relatively large or very small. The range where DP-FTRLM outperforms DP-SGDM in
report goals and privacy guarantees are larger when the population is relatively small or very large.

G.3 Increasing population size for privacy/computation trade-off
Though the plots in Figure 2c use the actual population size of 340k in StackOverflow for their privacy computation,
in Figure 11 we show a similar plot for a hypothetical population size of 1M clients. It is easy to see that the privacy-
computational cost trade-off for both the techniques improves10, more so for DP-SGD since the amplification improves
due to lower sampling rate. However, it is still the case that DP-FTRLM provides a better trade-off than DP-SGDM
for privacy parameter ε /∈ [3.2, 10] at δ = 10−6 for utility target 24.5%, and nearly all ε ∈ (0, 50] for utility target
23%.

9The best epsilon DP-SGDM can achieve is 10.16 by increasing report goal to be as large as the population 3.42e5
10The “kink” at ε ≈ 15 in the curve labelled “DP-FTRLM 24.5%” is due to the fact that the privacy accounting in DP-FTRL depends on the

maximum number of times any client participates in training. For report goal 500, all clients need to participate at most once, whereas for report
goal 700, the required number of rounds are just enough for a few clients to need to participate twice, which accounts for the visibly increased
privacy cost. In fact, for a higher report goal of 1000, still no client needs to participate more than twice to complete 1600 training rounds.
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Figure 10: Training curves of validation accuracy for DP-SGDM and DP-FTRLM for StackOverflow for report goal
100 and 1000 (suffix C100 and C1000 in the legend). DP-FTRLM with restart (see Appendix D) is used when
report goal is 1000 (less than five epochs of data). Simultaneously increasing noise multiplier and report goal by 10x
could significantly improve the privacy guarantee without sacrificing the utility. The noise multiplier for DP-SGDM-
C100, DP-FTRLM-C100, DP-SGDM-C1000, DP-FTRLM-C1000 are 0.007, 0.067, 0.07, and 0.67, respectively. The
corresponding test accuracy are 24.73%, 24.63%, 25.19% and 24.93%. The corresponding privacy ε can be found in
Table 5 .

Server Optimizer Privacy Setting
Epsilon Delta Noise Report goal Population

DP-SGDM 1.78e7 1e-6 0.007 100 3.42e5
DP-FTRLM 1.49e3 1e-6 0.067 100 3.42e5
DP-SGDM 7.71e4 1e-6 0.07 1000 3.42e5
DP-FTRLM 1.03e2 1e-6 0.67 1000 3.42e5
DP-SGDM 10.16 1e-6 23.97 3.42e5 3.42e5
DP-FTRLM 9.66 1e-6 13.81 2.06e4 3.42e5
DP-FTRLM 4.35 1e-6 35.24 5.26e4 3.42e5
DP-SGDM 8.98 1e-6 .67 9.56e3 1e6
DP-FTRLM 8.99 1e-6 8.71 1.15e4 1e6
DP-SGDM 4.17 1e-6 1.20 1.71e4 1e6
DP-FTRLM 4.19 1e-6 21.64 3.23e4 1e6

Table 5: The (ε, δ) privacy guarantee for DP-FTRLM and DP-SGDM under realistic and hypothetical report goal
and population of StackOverflow that would meet the target test accuracy 24.5%. Note that the DP-FTRLM privacy
accounting is based on the restart strategy in Appendix D.
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Figure 11: Relationship between privacy ε (when δ = 1/population) and report goal for a fixed accuracy target for
DP-FTRLM and DP-SGDM on the StackOverflow dataset with a hypothetically larger population of 1M users.
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Table 6: Parameters for the image classification experiment in Figure 1 (and the full version Figure 5) and Figure 7.
Clipping norm is 1.0. The “learning rate” reported for FTRL(M) is λ.

(a) MNIST

b = 250
20 epochs

FTRL/FTRLM
noise 4.0 7.0 20.0 50.0
ε 26.21 12.76 3.70 1.34
learning rate 1.0/10.0 2.0/20.0 5.0/50.0 10.0/100.0

SGD/SGDM
noise 0.42 0.52 0.74 1.14
ε 26.90 12.26 3.75 1.35
learning rate 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02

SGD
unamplified

noise 1.08 1.89 5.48 13.7
ε 27.15 13.19 3.75 1.35
learning rate 0.2 0.2 0.05 0.02

b = 1000
80 epochs

FTRLM
noise 8.0 14.0 40.0 100.0
ε 26.21 12.76 3.70 1.34
learning rate 5.0 10.0 20.0 50.0

SGD/SGDM
noise 0.62 0.8 1.61 3.67
ε 26.48 13.12 3.71 1.34
learning rate 2.0/0.2 2.0/0.1 0.5/0.05 0.2/0.02

SGD
unamplified

noise 2.2 3.67 11.06 27.68
ε 26.50 13.68 3.71 1.34
learning rate 0.5 0.2 0.1 0.05

(b) CIFAR-10

b = 500
100 epochs

FTRL/FTRLM
noise 10 12.1 18.1 27 50
ε 23.73 18.51 11.17 6.91 3.40
learning rate 2.0/20.0 2.0/20.0 5.0/50.0 5.0/50.0 20.0/200.0

SGD/SGDM
noise 0.61 0.66 0.79 0.98 1.51
ε 23.81 18.60 11.29 6.98 3.43
learning rate 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02 0.2/0.02

SGD
unamplified

noise 2.66 3.22 4.79 7.15 13.26
ε 23.88 18.61 11.30 6.99 3.43
learning rate 0.1 0.1 0.05 0.02 0.02

b = 2000
400 epochs

FTRLM
noise 20 24.2 36.2 54 100
ε 23.73 18.51 11.17 6.91 3.40
learning rate 10.0 10.0 20.0 20.0 50.0

SGD/SGDM
noise 1.26 1.46 2.06 2.98 5.4
ε 23.89 18.67 11.22 6.92 3.41
learning rate 1.0/0.1 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02

SGD
unamplified

noise 5.4 6.42 9.63 14.4 26.68
ε 23.42 18.68 11.23 6.93 3.41
learning rate 0.2 0.2 0.1 0.05 0.02

(c) EMNIST

b = 500
50 epochs

FTRL/FTRLM
noise 8.0 16.0 30.0 100.0
ε 24.64 10.46 5.06 1.35
learning rate 2.0/20.0 2.0/20.0 5.0/50.0 10.0/100.0

SGD/SGDM
noise 0.41 0.5 0.6 0.97
ε 25.34 10.50 5.08 1.36
learning rate 0.5/0.05 0.5/0.05 0.2/0.02 0.2/0.02

SGD
unamplified

noise 1.89 3.86 7.24 24.06
ε 25.50 10.53 5.08 1.36
learning rate 0.1 0.05 0.02 0.01

b = 2000
200 epochs

FTRLM
noise 16.0 32.0 60.0 200.0
ε 24.64 10.46 5.06 1.35
learning rate 10.0 20.0 20.0 50.0

SGD
noise 0.56 0.73 1.02 2.69
ε 25.58 10.63 5.07 1.35
learning rate 1.0/0.1 1.0/0.1 1.0/0.05 0.2/0.02

SGD
unamplified

noise 3.77 7.65 14.5 48.42
ε 25.59 10.64 5.08 1.35
learning rate 0.2 0.1 0.05 0.02

31



Table 7: Parameters for the image classification experiment in Figure 7. Clipping norm is 1.0. The “learning rate”
reported for FTRL(M) is λ.

Data Batch size FTRLM DPSGD

MNIST

500
noise 14.0 1.04
ε 8.37 3.40
learning rate 20.0 0.05

1000
noise 28.0 2.08
ε 5.57 2.64
learning rate 20.0 0.05

CIFAR-10

100
noise 2.42 0.132
ε 55.44 2389.37
learning rate 20.0 0.05

1000
noise 24.2 1.32
ε 11.96 9.35
learning rate 20.0 0.05

EMNIST

100
noise 3.2 0.1
ε 28.51 10051.63
learning rate 20.0 0.05

1000
noise 32.0 1.0
ε 6.97 2.44
learning rate 20.0 0.05
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