
The Role of Adaptive Optimizers

for Honest Private Hyperparameter Selection∗

Shubhankar Mohapatra† Sajin Sasy‡ Xi He§ Gautam Kamath¶ Om Thakkar‖

November 10, 2021

Abstract

Hyperparameter optimization is a ubiquitous challenge in machine learning, and the perfor-
mance of a trained model depends crucially upon their effective selection. While a rich set of
tools exist for this purpose, there are currently no practical hyperparameter selection methods
under the constraint of differential privacy (DP). We study honest hyperparameter selection
for differentially private machine learning, in which the process of hyperparameter tuning is
accounted for in the overall privacy budget. To this end, we i) show that standard composition
tools outperform more advanced techniques in many settings, ii) empirically and theoretically
demonstrate an intrinsic connection between the learning rate and clipping norm hyperparame-
ters, iii) show that adaptive optimizers like DPAdam enjoy a significant advantage in the process
of honest hyperparameter tuning, and iv) draw upon novel limiting behaviour of Adam in the
DP setting to design a new and more efficient optimizer.

1 Introduction

Over the last several decades, the field of machine learning has flourished. However, training
machine learning models frequently involves personal data, which leaves data contributors sus-
ceptible to privacy attacks. This is not purely hypothetical: recent results have shown that
models are vulnerable to membership inference [SSSS17, CLE+19, NSH19] and model inversion
attacks [FJR15, SRS17]. The leading approaches for privacy-preserving machine learning are based
on differential privacy (DP) [DMNS06]. Informally, DP rigorously limits and masks the contribution
that an individual datapoint can have on an algorithm’s output. To address the aforementioned
issues, DP training procedures have been developed [WM10, BST14, SCS13, ACG+16], which gen-
erally resemble non-private gradient-based methods, but with the incorporation of gradient clipping
and noise injection.

In both settings, hyperparameter selection is instrumental to achieving high accuracy. The most
common methods are grid search or random search, both of which incur a computational overhead
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scaling with the number of hyperparameters under consideration. In the private setting, this issue
is often magnified as most private training procedures introduce new hyperparameters. Regardless,
and more importantly, hyperparameter tuning on a sensitive dataset also costs in terms of privacy,
naively incurring a multiplicative cost which scales as the square root of the number of candidates
(based on composition properties of differential privacy [KOV15]).

Most prior works on private learning choose not to account for this cost [ACG+16, YLP+19,
TB21], focusing instead on demonstrating the accuracy achievable by private learning under ideal-
ized conditions; if the best hyperparameters were somehow known ahead of time. Some works
assume the presence of supplementary public data resembling the sensitive dataset [AGD+20,
RTM+20], which may be freely used for hyperparameter tuning. Naturally, such public data may
be scarce or nonexistent in settings where privacy is a concern, leaving practitioners with little guid-
ance on how to choose hyperparameters in practice. As explored in our paper, poor hyperparameter
selection with standard private optimizers can have catastrophic effects on model accuracy.

Hope is afforded by the success of adaptive optimizers in the non-private setting. The canonical
example is Adam [KB14], which exploits moments of the gradients to adaptively and dynamically
determine the learning rate. It works out of the box in many cases, providing accuracy comparable
with tuned SGD. However, Adam has been overlooked in the context of private learning since
previous works have show than fine-tuned DPSGD tends to perform better than DPAdam [PCS+20],
which has lead to several subsequent works [YZC+21, TB21] to limit themselves to highlighting
accuracy under ideal DPSGD hyperparameters. We navigate the different options available to a
practitioner to solve the honest private hyperparameter tuning problem and ask, are there optimizers
which provide strong privacy, require minimal hyperparameter tuning, and perform competitively
with tuned counterparts?

1.1 Our Contributions

• We investigate techniques for private tuning of hyperparameters. We perform the first em-
pirical evaluation of the proposed theoretical method of [LT19] and demonstrate that it can
be expensive; in certain cases, one can tune over sufficiently many hyperparameters using
standard composition tools such as moments accountant [ACG+16].

• We empirically and theoretically demonstrate that two hyperparameters, the learning rate
and clipping threshold, are intrinsically coupled for non-adaptive optimizers. While other
hyperparameters and the model architecture are restricted by the scope of the task, privacy
and utility targets, and computational resources, the learning rate and clipping norm have no
a priori bounds. Since the resulting hyperparameter grid adds up to the privacy cost while
tuning to achieve the model with the best utility, we explore leveraging adaptive optimizers
to reduce the hyperparameter space.

• We empirically demonstrate the DPAdam optimizer (with default values for most hyper-
parameters), can match the performance of tuned non-adaptive optimizers on a variety of
datasets, thus enabling private learning with honest hyperparameter selection. This find-
ing complements a prior claim of [PCS+20], which suggests that a well-tuned DPSGD can
outperform DPAdam. However, our findings show that this difference in performance is rela-
tively insignificant. Furthermore, in the realistic setting where hyperparameter tuning must
be accounted for in the privacy loss, we show that DPAdam is much more likely to produce
non-catastrophic results.

• We show that the adaptive learning rate of DPAdam converges to a static value. To leverage
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this, we introduce a new private optimizer, DPAdamWOSM that matches the performance of
DPAdam without computing the second moments.

2 Preliminaries

Definition 2.1 (Differential Privacy). [DKM+06, DMNS06] A randomized algorithm M achieves
(ε, δ)-DP if for all S ⊆ Range(M) and for any two database instances D,D′ ∈ D that differ only
in one tuple:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

The privacy cost is measured by the parameters (ε, δ) also referred to as the privacy budget.
Smaller values of ε correspond to stricter privacy guarantees, and it is standard in literature to
set δ � 1

n , where n is the size of the database. We set the δf in our work to 1
n scaled down to

the nearest power of 10. Complex DP algorithms can be built from the basic algorithms following
two important properties of differential privacy: 1) Post-processing states that for any function
g defined over the output of the mechanism M, if M satisfies (ε, δ)-DP, so does g(M); 2) Basic
composition states that if for each i ∈ [k], mechanism Mi satisfies (εi, δi)-DP, then a mechanism
sequentially applying M1, M2, . . . ,Mk satisfies (

∑k
i=1 εi,

∑k
i=1 δi)-DP.

Given a function f : D → Rd, the Gaussian mechanism adds noise drawn from a normal
distribution N (0, S2

fσ
2) to each dimension of the output, where Sf is the `2-sensitivity of f , defined

as Sf = maxD,D′differ in a row ‖f(D) − f(D′)‖2. For ε ∈ (0, 1), if σ ≥
√

2 ln(1.25/δ)/ε, then the
Gaussian mechanism satisfies (ε, δ)-DP.

The Gaussian mechanism is used to privatize optimization algorithms. In contrast to non-private
optimizers where batches are sliced from the training dataset, DP optimizers at each iteration work
by sampling “lots” from the training with probability L/n, where L is the (expected) lot size and
n is the total data size. A set of queries are computed over those samples. These queries include
gradient computation, updates to batch normalization or accuracy metric calculations. As there is
not any a priori bound on these query outputs, the sensitivity Sf is set by clipping the maximum
`2 norm of the gradient to a user-defined parameter C. The gradient of each point is then noised
and published. All DP optimizers follow the same framework in which they take steps on the
computed noisy gradient as in its non-private counterpart [MAE+18]. The privacy cost of the
whole training procedure is calculated by advanced composition techniques such as the Moments
accountant [ACG+16].

2.1 DP Optimizers

DP-SGD: The most popular private optimizer is the differentially private stochastic gradient
descent (DPSGD) [WM10, BST14, SCS13, ACG+16]. DPSGD takes individual steps for each point
in the sampled lot just like in SGD. Due to these individual steps, SGD is more locally unstable
and empirically generalizes better than other optimizers [ZFM+20]. However, SGD requires the
learning rate to be properly tuned when changing architectures or datasets, without which SGD
may show subpar performance. There are five main hyperparameters involved in DPSGD. We start
with those also present in the non-private setting, highlighting any differences that arise due to
privacy.

• Training iterations (T ) - In the private setting, more iterations results in a larger privacy cost.

• Lot size (L) - Lot size factors into the privacy calculation, due to amplification by subsam-
pling [BBG18].
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• Learning rate (α) - Learning rate has an important interplay with the clipping threshold C,
discussed in Section 5.

The following hyperparameters are new in the private setting.

• Clipping threshold (C) - To limit sensitivity, per-example gradients are clipped to have `2-
norm bounded by C.

• Noise scale (σ) - Scale of the noise added, as a multiple of C. A larger value gives higher
privacy but (typically) lower accuracy.

DPMomentum: The private counterpart of SGD-Momentum [RHW86, Qia99], which adds the
momentum parameter to the update rule of DPSGD [GAYB17]. This optimizer adds an extra
hyperparameter to tune as no default value for momentum is known.

DP-Adam: Adam [KB14] is an adaptive optimizer that combines the advantages from Ada-
Grad [DHS11] and RMSProp [HSS12]. At the core of Adam, exponentially averaged first and
second moment estimates of the gradients are used to take a step. Converting Adam to its dif-
ferentially private counterpart DPAdam can be done trivially by replacing the standard gradients
with their clipped and noised counterparts. Adam adds two extra hyperparameters (β1, β2) to
tune in the DP setting. However, default values of these parameters are known in the non-private
setting. We will tune these parameters to the private setting in Section 5. The adaptivity of these
optimizers imply they need not be tuned across learning rates, hence reducing a hyperparameter
to tune.

ADADP: This DP adaptive optimizer finds the best learning rate at every alternate iteration [KH20].
It does so by leveraging the `2 error of taking a full step and taking two half steps. If the error
computed is greater than a threshold τ , the learning rate is updated using a closed form expression.

As suggested by the authors, for all our experiments using ADADP, we use the threshold τ =
√

d
2T ,

where d is the model dimension and T is the total number of iterations.

2.2 Related Work

Hyperparameter tuning plays a vital role in machine learning practice. In the non-private setting,
ML practitioners use grid search, random search, Bayesian optimization techniques [SSA13] or
AutoML [HZC21] techniques to tune their models. However, there hasn’t been much research on
private hyperparameter tuning procedures due to the significant associated privacy costs. Each
set of hyperparameter configuration results in a privacy-utility tradeoff. This tradeoff for multiple
configurations can be captured by Pareto frontiers using multivariate Bayesian optimization over
parameter dimensions [AGD+20]. However, this method asks the model curator to query the
dataset multiple times which requires non-private access to the dataset. There have been some
end-to-end private tuning procedures [CMS11, CV13, KGGW15] which work for a selected number
of hyperparameter sets. These results work either in restricted settings for few combinations of
candidates under relaxations of approximate differential privacy. The most relevant work to ours is
an approach for private selection from private candidates [LT19]. Their work provides two methods,
one which outputs a candidate with accuracy greater than a given threshold, and another which
randomly stops and outputs the best candidate seen so far. The first approach is of limited utility
in practice as it requires a prior accuracy bound for the dataset. The second variant incurs a
considerable overhead in privacy cost. We study the second approach and compare it with a naive
approach based on Moments Accountant [ACG+16] which would scale as the square root of the
number of candidates. Recent work shows generalized version of the approach for private selection
on diverse with better bounds using Rényi DP [PS21].
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3 Problem Setup and Overview

Consider a sensitive dataset D which lies beyond a privacy firewall and has n points of the form
(x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ X is the feature vector of the ith point and yi ∈ Y is its
desired output. Though our experiments are carried out in the supervised setting, all results can
be translated to unsupervised setting as well. The dataset has been divided into two parts, the
training set and the validation set. A trusted curator wants to train a machine learning model
by making queries on the dataset with a total end-to-end training privacy budget of (εf , δf ) such
that the model can perform with high accuracy on the validation set. The curator wants to try
multiple hyperparameter candidates for the model to figure out which candidate gives the maximum
accuracy. However, as the model is private, each candidate requires multiple queries made on the
dataset and all of them need to be accounted in the total privacy budget of (εf , δf ).

Note that any validation accuracy must also be measured privately. Since this accuracy is a
low-sensitivity query with a scalar output, and must only be computed once per choice of hyper-
parameters, the cost of this procedure is generally a lower order term versus the main training
procedure. Thus for simplicity, we do not noise these validation accuracy queries. As we will see
later, some optimizers require more candidates to tune and hence would also require more privacy
budget than others.

To tackle private hyperparameter selection, we first compare the available private tuning pro-
cedures in Section 4. We show that the privacy cost for training a model depends on the hyper-
parameter grid size and standard composition theorems provide the best guarantees when the grid
is small. In Section 5, we investigate different optimizers to see how many candidates are required
to output a good solution. In Section 5, we provide theoretical and empirical evidence to demon-
strate an intrinsic coupling between two hyperparameters – the learning rate and clipping norm in
DPSGD. We show that this coupling makes DPSGD sensitive to these parameter choices, which
can drastically affect the validation accuracy. In Section 5, we demonstrate that an adaptive op-
timizer, DPAdam, translates well from the non-private setting and obviates tuning of the learning
rate. In Section 6, we empirically compare DPAdam with DPSGD and DPMomentum to show
that DPAdam performs at par with less hyperparameter tuning. Finally, in Section 7, we establish
that DPAdam converges to a static learning rate in restricted settings, and unveil a new optimizer
DPAdamWOSM which can leverage this converged value without computing the second moments.

4 Privately Tuning DP Optimizers

Effective hyperparameter tuning is crucial in extracting good utility from an optimizer. Unlike
the non-private setting, DP optimizers typically i) have more hyperparameters to tune; ii) re-
quire additional privacy budget for tuning. Existing work on DP optimizers acknowledge this
problem (e.g., [ACG+16]), but do not address the privacy cost incurred during hyperparameter
tuning [ACG+16, YLP+19, TB21]. There are two main prior general-purpose approaches for pri-
vate hyperparameter selection. The first performs composition via Moments Accountant [ACG+16],
and the second is the algorithm of [LT19] (LT). The latter is a theoretical result, and to the best
of our knowledge, has not been previously evaluated in practice. We investigate the privacy cost of
these two techniques in practice and discuss situations in which each method is preferred.

Tuning cost via LT [LT19] propose a random stopping algorithm (LT) to output a ‘good’
hyperparameter candidate from a pool of K candidates, {x1, . . . , xK}. They assume sampling
access to a randomized mechanism Q(D) which samples i ∼ [K], and returns the i-th candidate xi,
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and a score qi for this candidate. It is a random stopping algorithm, in which at every iteration, a
candidate is picked from Q i.i.d. with replacement and a γ-biased coin is flipped to randomly stop
the algorithm. When the algorithm stops, the candidate with the maximum score seen so far is
outputted. In the approximate DP version of this algorithm, an extra parameter Υ is set to limit
the total of number of iterations. The pseudocode of this algorithm is deferred to Appendix A.

Theorem 4.1 ([LT19], Theorem 3.4). Fix any γ ∈ [0, 1], δ2 > 0 and let Υ = 1
γ log 1

δ2
. If Q is

(ε1, δ1)-DP, then the LT algorithm is (εf , δf )-DP for εf = 3ε1 + 3
√

2δ1 and δf =
√

2δ1Υ + δ2.

Theorem 4.1 expresses the privacy cost of the algorithm in terms of the privacy cost of individual
learners, and parameters of the algorithm itself. The δ2 parameter does not significantly affect the
final epsilon εf of the algorithm and in practice, one can set it to a very small value (10−20). Though
a small value of δ2 has little effect on δf , it increases the hard stopping time of the algorithm, Υ.

To understand the LT algorithm, we will compare the privacy costs of training a single hyper-
parameter candidate with a final εf , δf budget via LT and compare it with the privacy cost ε1, δ1

of the underlying individual learner. This setting might seem unnatural for LT as it was designed
to select from a pool of candidates but we choose this setting to show the minimum privacy cost
overhead associated with LT and later show how the privacy cost changes for multiple candidates
(varying γ). To use LT, one needs to figure out the ε1, δ1 via Theorem 4.1 using the final εf , δf
values and in this case, γ = 1 (as we have just one candidate). The individual learner is then
trained using ε1, δ1 budget.

Figure 1: Comparing the privacy cost of LT versus Moments Accountant. The minimal privacy
overhead incurred by LT is at least ˜5x, and increases with the dataset size (left). However, as
we allow LT to sample and test more candidate hyperparameters, the privacy cost barely increases
(middle). Moments Accountant is able to test a significant number of candidates at the same cost
as the minimal privacy overhead of LT (right).

Due to the delicate balance of δf in Theorem 4.1, one can see the δ1 comes out to be much
smaller than δf . This change in δ1 results in a blowup of ε1 and hence, the final privacy cost of the
LT algorithm (3ε1 +3

√
2δ1), is much larger than what it would have been for learning one candidate

without LT. We call this increase the blowup of privacy. We measure this blowup in Figure 1(left),
for the setting of σ = 4, L = 250, T = 10, 000 with varying dataset sizes (n). It can be seen that
for n = 5, 000, the blowup is 4.8x whereas for for n = 950, 000, the blowup is almost 7.3x (note the
log scale on y-axis). Qualitatively similar trends persist for other choices of noise multiplier, lot
size and iterations. We add more experiments to compare LT vs MA with varying candidate sizes
in Appendix B.

Furthermore, we show that although LT entails a privacy blowup, decreasing γ (corresponding
to training more individual learners with ε1, δ1) doesn’t result in a significant difference in the final
epsilon guaranteed by LT. In Figure 1(middle), we show the final epsilon cost for different dataset
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size and varying values of γ ∈ [0.001, 0.01, 0.1, 1]. It is interesting to note here that with smaller
γ values, one can train many candidates (in expectation, 1

γ ) for negligible additional privacy cost.
The blowup to train 1 candidate (γ = 1) versus 1, 000 candidates (γ = 0.001) increases from 33
to 39 for n = 5, 000 and increases from 0.49 to 0.69, for n = 950, 000. This increase is minimal
in comparison to advanced composition, which grows proportional to O(

√
k). However, another

resource at play is the total training time, proportional to 1/γ (i.e., the total number of candidates).
In summary, the LT algorithm is effective if an analyst has the privacy budget to afford the initial
blowup, as the privacy cost of testing additional hyperparameters is insignificant.

Tuning cost via MA We learnt from the previous section that, LT permits selection from a
large pool of hyperparameters (depending on the γ value) but incurs a constant privacy blowup.
We compare LT with tuning using Moments Accountant (MA); for tuning via MA each hyperpa-
rameter candidate is trained by adding necessary Gaussian noise at each iteration, and the best
hyperparameter candidate is selected at the end, MA is used as the composition mechanism for ar-
riving at the final privacy cost of this process. We notice that with the same initial privacy blowup
of the LT algorithm, MA is able to compose a considerable number of hyperparameter candidates.
In Figure 1(right), we show the number of candidates that can be composed using MA for the
minimum privacy cost for running the LT algorithm (γ = 1), for the setting of σ = 4, L = 250, T =
10, 000 and varying dataset size (n) on the x-axis. As the T and L is set constant, bigger n values
in this graph correspond to fewer epochs of training and hence, worse utility. Depending on dataset
size, MA can compose 14 candidates for n = 5000 and up to 175 candidates when n = 100000. It is
perhaps surprising how well a standard composition technique performs versus LT. This informa-
tion can be highly valuable to a practitioner who has limited privacy budget. Qualitatively similar
trends persist for other choices of batch size, noise multiplier, and iterations.

From our experiments for both these tuning procedures, we conclude that while tuning with LT
entails an initial privacy blowup, the additional privacy cost for trying more candidates (smaller
γ) is minimal. Even though this has an additional computation cost, it can be appealing when an
analyst wants to try numerous hyperparameters. On the other hand, for the same overall privacy
cost, MA can be used to compose a significant number of hyperparameter candidates. Additionally,
MA allows access to all intermediate learners, whereas LT allows access to only the final output
parameters. In the sequel, this conclusion will be useful in making the naive MA approach a more
appealing tool for some settings (e.g., tighter privacy budgets).

5 Tuning DP Optimizers

We detail aspects of tuning both non-adaptive and adaptive optimizers. We start with tuning
non-adaptive optimizers. We theoretically and empirically demonstrate a connection between the
learning rate and clipping threshold. We also establish that non-adaptive optimizers inevitably
require searching over a large LR-clip grid to extract performant models. Adaptive optimizers
forego this problem as they do not need to tune the hyperparameter dimension of learning rate.
However, they introduce other hyperparameters that have known good choices in the non-private
setting, and later we empirically show that they are good candidates in the private setting.

Tuning DP non-adaptive optimizers While many hyperparameters are restricted due to com-
putational and privacy/utility targets, the learning rate α and the clipping threshold C have no
a priori bounds. In what follows, we show an interplay between these parameters by first theo-
retically analyzing the convergence of DPSGD. We then explore an illustrative experiment which
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Figure 2: Log of training loss for simulation ex-
periment at σ = 4 on a synthetic dataset with
DPSGD. The white pixels correspond to train-
ing losses below the 1st percentile. Note that
most best loss values lie on a diagonal express-
ing the inverse connection between α and C.

Figure 3: Log of training loss for simulation
experiment at σ = 4 on a synthetic dataset
with DPAdam. The white pixels correspond to
training loss lower than 1 percentile of DPSGD
counterpart. Note that best loss values are de-
pendent on α and spread over a wider range of
C.

demonstrates their entanglement. In the following theorem, we derive a bound on the expected
excess risk of DPSGD and while doing so, show that the optimal learning rate, αopt, is proportional
to the inverse of C. The proof appears in Appendix F.

Theorem 5.1. Let f be a convex and β-smooth function, and let x∗ = arg min
x∈S

f(x). Let x0 be

an arbitrary point in S, and xt+1 = ΠS(xt − α(gt + zt)), where gt = min(1, C
‖∇f(x)‖2 )∇f(x) and

zt ∼ N (0, σ2C2) is the noise due to privacy. After T iterations, the optimal learning rate is

αopt = R
CT
√

1+σ2
, where E[f( 1

T

∑T
i xt)− f(x∗)] ≤ RC

√
1+σ2√
T

and R = E[‖x0 − x∗‖].

Though Theorem 5.1 gives a closed-form expression for the optimum learning rate for the
convergence bound to hold, it is a function of the parameter R, which is unknown a priori to the
analyst. Given constant T and σ, the optimal learning rate αopt is inversely proportional to the
clipping norm C. This is crucial information in practice because these parameters vary among
datasets and are unbounded. This unboundedness property thus requires us to search over very
large ranges of C and α when we have no prior knowledge of the dataset. It is natural to ask
whether one can fix the clipping norm C and search only over a wide range for the learning rate α
(or vice versa). We explore this relationship experimentally via simulations on a synthetic dataset
as well as on the ENRON dataset, showing that fixing one of these two hyperparameters may often
but not always result in an optimal model.

We train a linear regression model on a 10-dimensional synthetic dataset of input-label pairs
(x, y) sampled from a distribution D as follows: x1, . . . , xd ∼ U(0, 1), y = x · w∗, w∗ = 10 · 1d. We
use the initialization w0 = 0d and train for 5000 iterations. We set the initial weights of the model
w0 = 0d, d = 10, k = 10 and train this linear regression model for 100 iterations. In the non-private
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Figure 4: Log of training loss for simulation ex-
periment at σ = 4 on a synthetic dataset with
DPSGD. The white pixels correspond to train-
ing losses below the 1st percentile. Note that
most best loss values lie on a diagonal express-
ing the inverse connection between α and C.

Figure 5: Log of training loss for simulation
experiment at σ = 4 on a synthetic dataset
with DPAdam. The white pixels correspond to
training loss lower than 1 percentile of DPSGD
counterpart. Note that best loss values are de-
pendent on α and spread over a wider range of
C.

setting, this model converges quickly with any reasonable learning rate, but in the private setting,
we notice that the training loss depends heavily on the choice of α and C. Figure 2 shows a heat
map for the log training loss when trained on (α,C) pairs taken from a large grid consisting of
[1, 2, 4, 5, 8] at scales of [10−4, 10−3, 10−2, 10−1, 100, 101]. The best candidates (lowest 1 percentile
of loss values) we demarcate with white pixels.

We observe two fundamental phenomena from this figure. First, to achieve the best accuracy,
α and C need to be tuned on a large grid spanning several orders of magnitude for each of these
parameters. Second, multiple (α,C) pairs achieve the best accuracy and all lie on the same diag-
onal, validating our theory for an inverse relation between learning rate and clipping norm. As
mentioned earlier, one might hypothesize that by setting the clipping norm C constant and tun-
ing α (corresponding to a vertical line in Figure 4) or vice versa, one could eliminate tuning a
hyperparameter. However, note that not all C and α values correspond to the lowest loss. This
phenomenon is evident by noticing that not all vertical or horizontal lines on this figure have white
pixels. This happens, for example, at the extremes (e.g., at the top-right corner), but also for
several intermediate and standard choices (e.g., C = 0.1 or 0.2). Again, the analyst has no way of
knowing this a priori.

In Figure 3, we detail the results for the same simulation experiment with DPAdam (with
default Adam hyperparameters) as the underlying optimizer. Here we notice that the inverse
relation between α and C no longer hold as we intuited earlier. In order to be able to compare
these two figures, we mark all candidates with lower losses than that of the lowest 1 percentile of
Figure 2 with white in Figure 3. Figure 3 suggests that there is a small range of ideal choices for
the initial learning rate α, and within these good choices of the α, DPAdam is significantly robust
to the choice of clip value, as we see white pixels for a large range of clip values that encompass
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(a) σ = 2 (b) σ = 4 (c) σ = 8

Figure 6: Ranking hyperparameter candidates across datasets. The black points correspond to
the candidates with α = 0.001 (with all permutations of β1, β2 from our searchgrid); the gold
corresponds to the candidate with α = 0.001, β1 = 0.9, β2 = 0.999

clip values used in practice. We repeat the same experiment over the ENRON dataset instead of
our synthetic dataset, and observe similar trends as seen in Figure 4 and Figure 5. We conclude
that to privately tune non-adaptive optimizers, we require a larger grid of hyperparameter options
than their adaptive counterparts.

Tuning DP adaptive optimizers Adaptive optimizers automatically adapt over the learning
rate α, requiring us to tune only over the clipping norm C. But recall our key question: can we
train models that perform competitively with the fine-tuned counterparts from DPSGD?

Adam [KB14], the canonical adaptive optimizer introduces two new hyperparameters, which
are the first and second moment exponential decay parameters (β1 and β2). In the non-private
setting, these parameters are relatively insensitive, and default values of α = 0.001, β1 = 0.9, and
β2 = 0.999 are recommended based on empirical findings, requiring no additional tuning for this
hyperparameter triple. Hence before we compare DPAdam and DPSGD, we first find and establish
such recommended values for this hyperparameter triple in the DP setting next, and then show that
DPAdam with a small hyperparameter space performs competitively with DPSGD in Section 6.

Table 1: Datasets used in experiment
Dataset Type #Samples #Dims #Classes

MNIST Image 70000 784 10
Gisette Image 6000 5000 2
Adult Structured 45222 202 2
ENRON Structured 5172 5512 2

To establish default choices of α, β1, and β2 for DPAdam, we evaluate this private optimizer
over four diverse datasets Table 1, and two learning models including logistic regression and a
neural network with one 100 neurons hidden layer (TLNN). These selected datasets include both
low-dimensional data (where the number of samples greatly outnumbers the dimensionality) and
high-dimensional data (where the number of samples and dimensionality are at same scale). Since
we still have a large hyperparameter space to tune over, for the rest of this work, we fix a constant
lot size (L = 250), and consider tuning over three different noise levels, σ ∈ [2, 4, 8], so that we
can study the effects of tuning the other hyperparameters more thoroughly. All experiments are
repeated three times and averaged before reporting. Additionally, in this particular experiment
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Figure 7: Comparing the testing accuracy curves of DPAdam, DPSGD and DPMomentum models
across their hyperparameter tuning grids with σ = 4. The limits for y-axis are adjusted based on
the dataset while maintaining a 15% range for all.

since we focus on α, β1, and β2, we also fix the clipping threshold C = 0.5, and T = 2500 iterations
of training. For each dataset and model, we run DPAdam three times with hyperparameters
(α, β1, β2) from the grids, α ∈ [0.001, 0.05, 0.01, 0.2, 0.5], β1, β2 ∈ [0.8, 0.85, 0.9, 0.95, 0.99.0.999].

We show that the default hyperparameter choice (α, β1, β2) of Adam in the non-private setting
also works well for DPAdam. Figure 6 shows the boxplots of testing accuracies of DPAdam over
the different hyperparameter choices. When α is 0.001 (same as in the non-private setting), all
the datasets and models have final testing accuracies (marked in black) close to the best possible
(and in most cases it is in fact the best) accuracy. Furthermore, we also highlight the accuracy of
the suggested default choice (α = 0.001, β1 = 0.9, β2 = 0.999) using gold dots. Hence, for the ease
of using DPAdam, we suggest the non-private default values for these parameters in the private
setting as well and hence in all our subsequent experiments.

6 Advantages of tuning using DPAdam

In the non-private setting, adaptive optimizers like Adam enjoy a smaller hyperparameter tuning
space than SGD. We ask two questions in this section. First, can DPAdam (with little tuning)
achieve accuracy comparable to a well-tuned DPSGD? Second, what is the privacy-accuracy tradeoff
one incurs when using either of the two methods we detail in Section 4 for hyperparameter selection.

To answer both questions, we compare DPAdam and DPSGD over the same set of datasets
and models from the previous section. We report the accuracy of DPSGD with a range of learning
rates and clipping values shown in Table 2, and the testing accuracy of DPAdam with default
parameter choice from Section 5 (α = 0.001, β1 = 0.9, β2 = 0.999) and a range of clipping values C
in Table 2. In total, DPSGD has 40 candidates to tune over, and DPAdam has 4. This is because
we have shown in Section 5 that DPSGD needs a wide grid to obtain the best accuracy when data
distributions are unknown. Additionally, we also consider the DPMomentum optimizer. Similar to
how we searched for default tuning choices for DPAdam in Section 5, we investigate if there exists
a qualitatively good choice for the momentum hyperparameter, and unfortunately our results show
that there is no such choice.
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Table 2: Parameter grid for comparing DPSGD and DPAdam
Optimizer Parameter Values

DPSGD
α

0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1

DPMomentum
α

0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1
m 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99

DPAdam C 0.1, 0.2, 0.5, 1

In order to show the comparison from both sides of the privacy-accuracy tradeoff, we compare
the three optimizers through i) the privacy cost when extracting the best accuracy from these
optimizers, and ii) the accuracy one would obtain from them under the tight privacy constraints.

Prioritizing Accuracy For brevity, we show experiments for σ = 4 in Figure 7, results for other
values of σ are displayed in Appendix G. For each dataset and model, we train three times for each
hyperparameter candidate and report the max every 100 iterations, corresponding to the dark lines
for each optimizer. We note that their maxima are extremely similar. However, Table 3 shows
the final privacy costs incurred by each of these max accuracy lines, and reflects our claims from
Section 4 that using fewer hyperparameter candidates and composing privacy via MA gives a much
tighter privacy guarantee.

Dataset DPSGD DPMomentum DPAdam

Adult 5.01 5.23 1.91

ENRON 30.86 32.31 12.80

Gisette 26.40 27.64 10.76

MNIST 3.01 3.14 1.14

Table 3: Final ε (at δ = 10−6) for optimizers for the LR Models (Figure 7). DPSGD and DPMo-
mentum use LT for privacy accounting; DPAdam uses MA.

Prioritizing Privacy Additionally in Figure 7, DPSGD and DPMomentum have pastel dotted
lines corresponding to their mean accuracy attained using the MA composition that provides the
tightest privacy guarantees for DPAdam. These pastel lines are the mean accuracies (with 95% CI)
from 100 repetitions of this experiment. Since DPAdam has only 4 hyperparameter candidates, for
this experiment, we sample 4 of the candidates at random for DPSGD and DPMomentum so that
they all incur the same privacy cost. Since the candidate pool is significantly larger for DPSGD
and DPMomentum, we additionally scrutinize the parameter grid for them and prune the learning
rates that perform poorly. Our pruning process (detailed in the supplement) is quite generous, and
favours minimizing the hyperparameter space of DPSGD and DPMomentum as much possible.1

1Note, pruning itself is of course unfair; the intent was to design a DP optimizer that can be used on any data
distributions that we have no prior knowledge of. To do so with DPSGD one would have to consider a significantly
wide range of (α,C) pairs to cover ‘good’ candidates as we illustrated in Section 5
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Despite the pruning advantage we see that these optimizers perform subpar than DPAdam when
constrained with privacy.

Figure 8: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 2 with σ = 4. The y-axes limits are adjusted based
on the dataset while maintaining a 15% range for all.

7 DPAdamWOSM

In addition to a decaying average of past gradient updates, DPAdam also maintains a decaying
average of their second moments. In this section, we design DPAdamWOSM (DPAdam Without
Second Moments), a new DP optimizer that operates only using a decaying average of past gra-
dients, as well as eliminates the need to tune the learning rate parameter. We achieve this by
analyzing the convergence behavior of the second-moment decaying average in DPAdam in regimes
where the scale of noise added is much higher than the scale of the clipped gradients. Setting the
effective step size (ESS) of DPAdam to the converged constant, and removing all computations re-
lated to the second-moment updates, results in DPAdamWOSM. We empirically demonstrate that
DPAdamWOSM matches the utility of DPAdam, while requiring less computation than DPAdam.

Observe that removing the second-moment updates from DPAdam reduces it to DPMomentum
with one additional feature: bias-correction to the first-moment decaying average, which DPAdam
does to account for its initialization at the origin. While the resultant optimizer still requires tuning
the learning rate (in addition to other hyperparameters like the clipping threshold), DPAdamWOSM
can be viewed as self-tuning the learning rate by fixing it to the converged effective step size in
DPAdam.

Effective step size (ESS) in DPAdam DPAdam results have less variance than DPSGD due
to its adaptive learning rate. To understand this phenomenon better, we inspect DPAdam’s update
step. DPAdam being an adaptive optimizer picks per-parameter ESS as α√

v̂t+ξ
, which is the base

learning rate α scaled by the second moment of the individual parameter gradients. We notice
that when g → 0, the ESS for DPAdam converges for the first moment gradient, which innately
accounts for the clip bound one is training with. This may happen at later iterations, when the
model is close to its minima and the gradients get close to zero.
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Theorem 7.1. The effective step size (ESS) for DPAdam with g → 0 converges to ESS∗ =
α

(σC/L)+ξ .

Proof. Recall that the average noisy gradient over a lot is g̃ = g +N (0, σ2C2)/L. We now look at
the effect of this noisy gradient on the effective step size (ESS) of DPAdam. As g → 0, the second

moment of DPAdam converges to σ2C2

L2 . This gives us the converging value for ESS:

ESS∗ =
α√
v̂t + ξ

=
α√

σ2C2

L2 + ξ
=

α

(σC/L) + ξ

Theorem 7.1 gives a closed form expression that ESS converges to. We can use this value in
place of α√

v̂t+ξ
in the update step from the inception of the learning process. Since the second-

moment updates (e.g., v̂t) are not used anymore, removing them results in our new optimizer
DPAdamWOSM. We provide a pseudo-code for DPAdamWOSM in the appendix.

Comparing Adaptive Optimizers We evaluate DPAdamWOSM by running it alongside DPAdam
and ADADP with the same hyperparameter grid in the appendix. For brevity, we show experi-
ments on σ = 4 and others appear in the supplement. In Figure 8, we show the maximum and
median accuracy curves for all the optimizers. We display the median accuracy curves (shown in
dotted), as an indicator of the quality of the entire pool of hyperparameter candidates for a given
optimizer; which in this case is strictly over the choices of clip. The max lines for ADADP lies
beneath DPAdam and DPAdamWOSM for all dataset except Adult. Also, the max accuracy line
for DPAdamWOSM runs alongside DPAdam which means that it can perform as good as DPAdam
throughout training. The median line for DPAdamWOSM also performs alongside DPAdam and in
some cases is able to beat it (e.g, the median for DPAdamWOSM for MNIST-LR and MNIST-TLNN
lies above the median line of DPAdam). This occurrence is seen because DPAdamWOSM uses the
converged ESS from the first iteration of training.

8 Conclusion

We thoroughly investigated honest hyperparameter selection for DP optimizers. We compared two
existing private methods (LT and MA) to search for hyperparameter candidates, and showed that
the former incurs a significant privacy cost but can compose over many candidates, while the latter
is effective when the number of candidates is small. Next, we explored connections between the
clipping norm and the step size hyperparameter to show an inverse relationship between them.
Additionally, we compared non-adaptive and adaptive optimizers, demonstrating that the latter
typically achieves more consistent performance over a variety of hyperparameter settings. This can
be vital for applications where public data is scarce, resulting in difficulties when tuning hyperpa-
rameters. Finally, we brought to light that DPAdam converges to a static learning rate when the
noise dominates the gradients. This insight allowed us to derive a novel optimizer DPAdamWOSM,
a variant of DPAdam which avoids the second-moment computation and enjoys better accuracy
especially at earlier iterations. Future work remains to investigate further implications of these
results to provide tuning-free end-to-end private ML optimizers.
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A LT Algorithm

Algorithm 1 Hard stopping private selection algorithm for (ε, δ)-DP input algorithms

Require: γ ≤ 1, δ2 > 0, and sampling access to Q(D)
1: Initialize the list S = ∅
2: Initialize Υ = 1

γ log 1
δ2

3: for j ∈ [1,Υ] do
4: Draw (x, q) ∼ Q(D)
5: S ← S ∪ (x, q)
6: Flip a γ-biased coin, output highest scored candidate from S and halt;
7: end for
8: Output highest scored candidate from S

B LT vs MA with varying candidate size

Continuing from Section 4, in this section we show an additional experiment in which we compare
the LT (Liu and Talwar) and MA (Moments Accountant) algorithms with varying number of
hyperparameter candidates. In Figure 9, we run the LT and MA algorithms for T = 10000 with
σ = 4 and L = 250 with varying candidate size and compare the final privacy costs. The γ value
for the LT algorithm is set to 1/k, where the k is the number of candidates. It can be seen that
the privacy cost of LT (blue) remains almost constant for with increasing number of candidates.
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Figure 9: Comparing LT vs MA with varying number of candidates at setting σ = 4, L = 250,
T = 10000. MA can compose upto 14 and 26 candidates for the same cost of LT for dataset sizes
5k (left) and 60k (right) respectively.

Figure 9 also demonstrates the exact number of candidates when the cost of MA (orange) remains
below the LT cost. This insight is valuable in practice to a practitioner to decide the which algorithm
to choose for hyperparameter tuning with respect to the number of candidates.

C Pruning hyperparameter grid for SGD

Figure 10: Pruning for DPSGD. Each (α,C) point on the heatmap shows how many times it has
performed best among all candidates

Figure 10 demonstrates a heat map plot of the candidate hyperparameter pairs for DPSGD.
Each point on this heatmap is assigned a score (totalling 2400) that reflects how many times that
(α,C) pair has performed the best among all the candidates, and we score across all iterations (at
a granularity of every 100 iterations) of training.

We justify this as a fair metric of ‘goodness’, for candidates as one could in practice stop
training at any iteration. Furthermore this metric is quite critical of quality, in that it only awards
a hyperparameter set a point, if it appeared as the best candidate at one of the intervals. Hence
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we deem this to be a generous pruning of the search space, which will imbue the best possible
advantage to DPSGD with regards to a pruned hyperparameter search space.

D Implementation Details

The code for our paper is written in Python3.6 using the PyTorch library. The implementation of
all private optimizers are done using the Pyvacy library2. We run our code on ComputeCanada
servers. Each allocation of the server includes 2 CPU cores, 8 GB RAM and 1 GPU from the list
– P100, V100, K80. We report results from all our experiments after averaging over 3 runs. The
code is attached with our supplementary material submission.

All datasets used in our experiments are publicly available. We split all datasets into 80%
training and 20% validation sets. For our experiments, we assume that all our datasets start in its
preprocessed state, i.e. the numerical features are scaled to the range [0,1], as is standard practice
in machine learning. However when considering an end-to-end private algorithm, this preprocessing
itself may need to be performed in a privacy-preserving fashion. In this work, we do not account
for privacy in this step. Note that for our work this only effects the ENRON and Adult datasets,
where scaling the values does require computing the maximum possible values of features in a
differentially-private fashion, whereas the max values for image datasets (Gisette and MNIST) are
known a priori due to max pixel value and does not involve any privacy cost.

E Omitted Pseudocode for DPAdamWOSM

Algorithm 2 Optimization using DPAdamWOSM

Require: Training set A : {x1, ..., xn}, Loss function L(θ), Parameters: Lot size L, Learning rate
α, Gradient norm bound C, Noise scale σ, Total number of iterations T , Exponential decay
rate β1

1: Initialize model with θ0 randomly
2: Initialize first moment vector m0 = 0
3: Set learning rate to ESS α = 10−3

(σC/L)+10−8 ;

4: for t ∈ [1, T ] do
5: Sample a random subset Lt ⊆ A, by independently including each element of A with proba-

bility L/n
6: Compute gradient ∀xi ∈ Lt

gt(xi) = ∇θL(θt, xi)

7: Clip each gradient in `2 norm to C ḡt(xi) = gt(xi)/max(1, ‖gt(xi)‖2C )
8: Add noise g̃t = 1

|L|(
∑

i ḡt(xi) +N (0, σ2C2I))
9: Exponentially average the first moment

mt = β1 ·mt−1 + (1− β1) · g̃t
10: Perform bias correction

m̂t = mt

1−βt
1

11: Update model θt = θt−1 − α · m̂t

12: end for
13: Compute privacy cost using Moments Accountant.

2https://github.com/ChrisWaites/pyvacy

19

https://github.com/ChrisWaites/pyvacy


F Proof of Theorem 2

Theorem F.1. Let f be a convex and β-smooth function, and let x∗ = arg min
x∈S

f(x). Let x0

be an arbitrary point in S, and xt+1 = ΠS(xt − α(gt + zt)), where gt = min(1, C
‖∇f(x)‖2 )∇f(x)

and zt ∼ N (0, σ2C2) is the noise due to privacy. After T iterations, the optimal learning rate is

αopt = R
CT
√

1+σ2
, where E[f( 1

T

∑T
i xt)− f(x∗)] ≤ RC

√
1+σ2√
T

and R = E[‖x0 − x∗‖].

Proof.

E[‖xt+1 − x∗‖2
∣∣∣ xt] = E[‖xt − α(gt + zt)− x∗‖2

∣∣∣ xt]
= E[‖xt − x∗‖2 − 2α(gt + zt)(xt − x∗) + α2‖(gt + zt)‖2

∣∣∣ xt]
= ‖xt − x∗‖2 − 2αE[(gt + zt)

∣∣∣ xt]T (xt − x∗) + α2E[‖(gt + zt)‖2
∣∣∣ xt]

≤ ‖xt − x∗‖2 − 2α[f(xt)− f(x∗)] + α2E[‖(gt + zt)‖2
∣∣∣ xt]

The inequality is due to convexity of the loss function and E[(gt + zt)] = gt due to 0-mean noise.
Taking expectation on both sides and reordering,

2α[f(xt)− f(x∗)] ≤ E[‖xt+1 − x∗‖2]−E[‖xt − x∗‖2] + α2E[‖(gt + zt)‖2

≤ E[‖xt+1 − x∗‖2]−E[‖xt − x∗‖2] + α2(C2 + C2σ2)

Summing for T steps and dividing both sides by 2αT ,

E[f(
1

T

T∑
i

xt)− f(x∗)] ≤ R2

2αT
+
αC2(1 + σ2)

2
(1)

Taking derivative and finding best value of α,

αopt =
R

C
√

1 + σ2T

Plugging αopt to Eq. 1,

E[f(
1

T

T∑
i

xt)− f(x∗)] ≤ RC
√

1 + σ2

√
T

G Additional experiment results for Section 6 and Section 7

In Figures 11 and 12, we display our results for the same experiments described in Section 6, with
σ = 2, and σ = 8 respectively. Similarly Figure 13 and 14 displays our results of the experiments
detailed in Section 7 with σ = 2, and σ = 8.
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Figure 11: Comparing the testing accuracy curves of DPAdam and DPSGD models across hyper-
parameter tuning grid from Table 2 with σ = 2.

Figure 12: Comparing the testing accuracy curves of DPAdam and DPSGD models across hyper-
parameter tuning grid from Table 2 with σ = 8.
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Figure 13: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 2 with σ = 2. The limits for the y-axes are adjusted
based on the dataset while maintaining a 15% range for all.

Figure 14: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 2 with σ = 8. The limits for the y-axes are adjusted
based on the dataset while maintaining a 15% range for all.
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