
Towards Practical Differentially Private Convex
Optimization

Roger Iyengar
Carnegie Mellon University

Om Thakkar
Boston University

Joseph P. Near
University of California, Berkeley

Abhradeep Thakurta
University of California, Santa Cruz

Dawn Song
University of California, Berkeley

Lun Wang
Peking University

Abstract—Building useful predictive models often in-
volves learning from sensitive data. Training models with
differential privacy can guarantee the privacy of such
sensitive data. For convex optimization tasks, several dif-
ferentially private algorithms are known, but none has yet
been deployed in practice.

In this work, we make two major contributions towards
practical differentially private convex optimization. First,
we present Approximate Minima Perturbation, a novel
algorithm that can leverage any off-the-shelf optimizer.
We show that it can be employed without any hyperpa-
rameter tuning, thus making it an attractive technique
for practical deployment. Second, we perform an extensive
empirical evaluation of the state-of-the-art algorithms for
differentially private convex optimization, on a range of
publicly available benchmark datasets, and real-world
datasets obtained through an industrial collaboration. We
release open-source implementations of all the differentially
private convex optimization algorithms considered, and
benchmarks on as many as nine public datasets, four of
which are high-dimensional.

I. INTRODUCTION

Building useful predictive models often involves learn-
ing from sensitive data. To preserve the privacy of
such sensitive data, many systems first carry out the
learning task over the data, and then release just the final
“learned” model. However, as many recent works [1],
[2], [3] indicate, a model can leak information about
the sensitive data it was trained on, even though the
data might have never been made public. To prevent
such information leakage, differential privacy (DP) [4],
[5] has been recently used as a gold standard for per-
forming learning tasks over sensitive data. It has also
been adopted by large-scale corporations like Google
[6], Apple [7], etc. Intuitively, DP prevents an adversary
from confidently making any conclusions about whether
a sample was used in training a model, even while having
access to the model and any external side information.

The authors are ordered alphabetically.

With the recent advancements in machine learning and
big data, private convex optimization has proven to be
useful for large-scale learning over sensitive user data
that has been collected by organizations. The objective of
this work is to provide insight into practical differentially
private convex optimization, with a specific focus on
the classical technique of objective perturbation [8],
[9]. Our main technical contribution is to design a
new algorithm for private convex optimization that is
amenable to real-world scenarios, and provide privacy
and utility guarantees for it. In addition, we conduct
a broad empirical evaluation of approaches for private
convex optimization, including our new approach. Our
evaluation is more extensive than prior works [8], [10],
[11], [12]; it includes nine public datasets, four of
which are high-dimensional. Apart from these, we also
consider four real-world use cases, obtained in collabo-
ration with Uber Technologies, Inc. We provide advice
and resources for practitioners, including open-source
implementations [13] of the algorithms evaluated, and
benchmarks on all the public datasets considered.

A. Objective Perturbation and its Practical Feasibility

We focus our attention on the technique of objective
perturbation, because prior works [8], [9] as well as
our own preliminary empirical results have hinted at
its superior performance. The standard technique of ob-
jective perturbation [8] consists of a two-stage process:
“perturbing” the objective function by adding a random
linear term, and releasing the minima of the perturbed
objective. It has been shown [8], [9] that releasing such
a minima is sufficient for achieving DP guarantees.

However, objective perturbation provides privacy
guarantees only if the output of the mechanism is the
exact minima of the perturbed objective. Practical algo-
rithms for convex optimization often involve the use of
first-order iterative methods, such as gradient descent or

stochastic gradient descent (SGD) due to their scalability.
However, such methods typically offer convergence rates
that depend on the number of iterations carried out by
the method, so they are not guaranteed to reach the
exact minima in finite time. As a result, it is not clear if
objective perturbation in its current form can be applied
in a practical setting, where one is usually constrained
by resources such as computing power, and reaching the
minima might not be feasible.

We address the fundamental question of whether an al-
ternative to standard objective perturbation exists which
provides privacy and utility guarantees when the released
model is not necessarily the minima of the perturbed
objective. In this work, we answer this question in the
positive: it is possible to get privacy and utility guaran-
tees even if the system releases a noisy “approximate”
minima of the perturbed objective. A major implication
of this result is that one can use first-order iterative
methods in combination with such an approach. This can
be highly beneficial in terms of the time taken to obtain
a private solution, as first-order methods often succeed
to find a “good” solution very quickly.

B. Our Approach: Approximate Minima Perturbation

We propose Approximate Minima Perturbation
(AMP), a strengthened alternative to objective
perturbation that provides privacy and utility guarantees
when the released model is a noisy “approximate”
minima for the perturbed objective. We measure the
convergence of a model in terms of the Euclidean
norm of the gradient of the perturbed objective at the
model. The scale of the noise added to the approximate
minima contains a parameter representing the maximum
tolerable gradient norm. This results in a trade-off
between the gradient norm bound (consequently, the
amount of noise to be added to the approximate
minima), and the difficulty, in practice, of being able
to obtain an approximate minima within the norm
bound. This can be useful in settings where a limited
computing power is available, which can in turn act as
a guide for setting an appropriate norm bound. We note
that if the norm bound is set to zero, then this approach
reduces to the setting of standard objective perturbation.
Approximate Minima Perturbation also brings with it
certain distinct advantages, which we will describe next.

Approximate Minima Perturbation works for all
convex objective functions: While previous works [8],
[9] provide privacy guarantees for objective perturba-
tion only when the objective is a loss function of a

generalized linear model1, the guarantees provided for
AMP hold for any objective function.2 In both cases,
the objective functions are assumed to possess standard
properties like Lipschitz continuity, and smoothness.

Approximate Minima Perturbation is the first fea-
sible approach that can leverage any off-the-shelf
optimizer: AMP can accommodate any off-the-shelf
optimizer as a black-box for carrying out its optimization
step. This enables a simple implementation that inherits
the scalability properties of the optimizer used, which
can be particularly important in situations where high-
performance optimizers are available. AMP is the only
known feasible algorithm for DP convex optimization
that allows the use of any off-the-shelf optimizer.

Approximate Minima Perturbation has a competitive
hyperparameter-free variant: To ensure privacy for an
algorithm, its hyperparameters must be chosen either
independently of the data, or by using a differentially
private hyperparameter tuning algorithm. Previous work
[8], [14], [15] has shown this to be a challenging task.
AMP has only four hyperparameters: one related to the
Lipschitz continuity of the objective, and the other three
related to splitting the privacy budget within the algo-
rithm. In Section V-A, we present a data-independent
method for setting all of them. Our empirical evalu-
ation demonstrates that the resulting hyperparameter-
free variant of AMP yields comparable accuracy to the
standard variant with its hyperparameters tuned in a data-
dependent manner (which may be non-private).

C. Empirical Evaluation, & Resources for Practitioners

This work also reports on an extensive and broad em-
pirical study of the state-of-the-art differentially private
convex optimization techniques. In addition to AMP and
its hyperparameter-free variant, we evaluate four exist-
ing algorithms: private gradient descent with minibatch-
ing [16], [15], both the variants (convex, and strongly
convex) of the private Permutation-based SGD algo-
rithm [12], and the private Frank-Wolfe algorithm [17].

Our evaluation is the largest to date, including a
total of 13 datasets. We include datasets with a variety
of different properties, including four high-dimensional
datasets and four real-world use cases represented by
datasets obtained in collaboration with Uber.

The results of our empirical evaluation demonstrate
three key findings. First, we confirm the expectation that
the cost of privacy decreases as dataset size increases.

1The loss function of a generalized linear model is parameterized
by an inner product of the feature vector of the data, and the model.

2Our analysis, in particular, extends to objective perturbation as well.

For all the real-world use cases in our evaluation, we
obtain differentially private models that achieve an ac-
curacy within 4% of the non-private baseline even for
very conservative settings of the privacy parameters. For
reasonable values of the privacy parameters, the accuracy
of the best private model is within 2% of the baseline for
two of these datasets, essentially identical to the baseline
for one of them, and even slightly higher than the
baseline for one of the datasets! This provides empirical
evidence to further the claims of previous works [18],
[19] that DP can also act as a type of regularization,
reducing the generalization error.

Second, our results demonstrate a general ordering of
algorithms in terms of empirical accuracy. Our results
show that AMP generally outperforms all the other algo-
rithms across all the considered datasets. Under specific
conditions like high-dimensionality of the dataset and
sparsity of the optimal predictive model for it, we see
that private Frank-Wolfe provides the best performance.

Third, our results show that a hyperparameter-free
variant of AMP achieves nearly the same accuracy as the
standard variant with its hyperparameters tuned in a data-
dependent manner. Approximate Minima Perturbation is
therefore simple to deploy in practice as it can leverage
any off-the-shelf optimizer, and it has a competitive
variant that does not require any hyperparameter tuning.

We provide an open-source implementation [13] of
the algorithms evaluated, including our Approximate
Minima Perturbation, and a complete set of benchmarks
used in producing our empirical results. In addition to
enabling the reproduction of our results, this set of
benchmarks will provide a standard point of reference
for evaluating private algorithms proposed in the future.
Our open-source release represents the first benchmark
for differentially private convex optimization.

D. Main Contributions

The main contributions of this work are as follows:

• We propose Approximate Minima Perturbation, a
strengthened alternative to objective perturbation that
provides privacy guarantees even for an approximate
minima of the perturbed objective, and therefore
allows the use of any off-the-shelf optimizer. No
previous approach provides this capability. Compared
to previous approaches, AMP also provides improved
utility in practice, and works with any convex loss
function under standard assumptions.

• We conduct the largest empirical study to date of
state-of-the-art DP convex optimization approaches,
including as many as nine public datasets, four of

which are high-dimensional. Our results demonstrate
that AMP generally provides the best accuracy.

• We evaluate DP convex optimization on four real-
world use cases, obtained in collaboration with Uber.
Our results suggest that for the large-scale datasets
used in practice, privacy-preserving models can obtain
essentially the same accuracy as non-private models
for reasonable values of the privacy parameters. In
one case, we show that a DP model achieves a higher
accuracy than the non-private baseline.

• We present a competitive hyperparameter-free variant
of AMP, allowing the approach to be deployed with-
out the need for tuning on publicly available datasets,
or by a DP hyperparameter tuning algorithm.

• We release open-source implementations [13] of all
the algorithms we evaluate, and the first benchmarks
for differentially private convex optimization algo-
rithms on as many as nine public datasets.

II. RELATED WORK

Convex optimization in the non-private setting has a
long history, with several excellent resources providing
a good overview [20], [21]. A lot of recent advances
have been made in the field of convex Empirical Risk
Minimization (ERM) as well. A comprehensive list of
works on stochastic convex ERM has been provided in
[22], whereas [23] provides dimension-dependent lower
bounds for the sample complexity required for stochastic
convex ERM and uniform convergence.

A large body of existing work examines the problem
of differentially private convex ERM. The techniques
of output perturbation and objective perturbation were
first proposed in [8]. Near dimension-independent risk
bounds for both the techniques were provided in [11];
however, the bounds are achieved for the standard set-
tings of the techniques, which provide privacy guaran-
tees only for the minima of their respective objective
functions. A private SGD algorithm was first given in
[10], and optimal risk bounds were provided for a later
version of private SGD in [16]. A variant of output
perturbation was proposed in [12] that requires the use
of permutation-based SGD, and reduces sensitivity using
properties of that algorithm. Several works [9], [24] deal
with DP convex ERM in the setting of high-dimensional
sparse regression, but the algorithms in these works
also require obtaining the minima. The Frank-Wolfe
algorithm [25] has also seen a resurgence lately [26],
[27], [28], [29]. We study the performance of a DP
version of Frank-Wolfe [17] in our empirical analysis.

There are also works in DP convex optimization apart
from the ERM model. Many recent works [30], [31], [32]
examine the setting of online learning, whereas high-
dimensional kernel learning is considered in [33]; these
settings are quite different from ours, and the results are
incomparable. There have also been works [34], [35] on
DP regression analysis, a subset of DP convex optimiza-
tion. However, the privacy guarantees in these hold only
if the algorithms are able to find some minima. There
have also been advances in DP non-convex optimization,
including deep learning [36], [15]. A broad survey of
works in DP machine learning has been provided in [37].

Previous empirical evaluations have provided limited
insight into the practical performance of the various algo-
rithms for DP convex optimization. Output perturbation
and objective perturbation are evaluated on two datasets
in [8] and [11], and private SGD is evaluated in [10]. Wu
et al. [12] perform the broadest comparison, including
their own approach, and two variants of private SGD
[10], [16] on six datasets, but they do not include objec-
tive perturbation. No prior evaluation considers the state-
of-the-art algorithms from all three major lines of work
in the area (output perturbation, objective perturbation,
and private SGD). Moreover, none of the prior evalua-
tions considers high-dimensional data—a maximum of
75 dimensions is considered in [12].

Our empirical evaluation is the most complete to date.
We evaluate state-of-the-art algorithms from all 3 lines
of work on 9 public datasets and 4 real-world use cases.
We consider low-dimensional and high-dimensional (as
many as 47,236 dimensions) datasets. In addition, we
release open-source implementations for all algorithms,
and benchmarking scripts to reproduce our results [13].

III. PRELIMINARIES

In this section, we formally define the notation, im-
portant definitions, and results used in this work.

Given an n-element dataset D = {d1, d2, . . . , dn}, s.t.
di ∈ D for i ∈ [n], the objective is to get a model θ̂ from
the following unconstrained optimization problem:

θ̂ ∈ arg min
θ∈Rp

L(θ;D),

where L(θ;D) = 1
n

n∑
i=1

`(θ; di) is the empirical risk,

p > 0, and `(θ; di) is defined as a loss function for di that
is convex in the first parameter θ ∈ Rp. This formulation
falls under the framework of ERM, which is useful in
various settings, including the widely applicable problem
of classification in machine learning via linear regres-
sion, logistic regression, or support vector machines. The

notation ‖x‖ is used to represent the L2-norm of a vector
x. Next, we define certain basic properties of functions
that will be helpful in further sections.

Definition III.1. A function f : Rp → R :

• is a convex function if for all θ1, θ2 ∈ Rp,
f(θ1)− f(θ2) ≥ 〈∇f(θ2), θ1 − θ2〉.

• is a ξ-strongly convex function if for all θ1, θ2 ∈ Rp,
f(θ1) ≥ f(θ2) + 〈∇f(θ2), θ1 − θ2〉+ ξ

2‖θ1 − θ2‖2,
or equivalently,
〈∇f(θ1)−∇f(θ2), (θ1 − θ2)〉 ≥ ξ‖θ1 − θ2‖2.

• has Lq-Lipschitz constant L if for all θ1, θ2 ∈ Rp,
|f(θ1)− f(θ2)| ≤ L · ‖θ1 − θ2‖q .

• is β-smooth if for all θ1, θ2 ∈ Rp,
‖∇f(θ1)−∇f(θ2)‖ ≤ β · ‖θ1 − θ2‖.

To establish the notion of DP, we first define neigh-
boring datasets. We will refer to a pair of datasets
D,D′ ∈ Dn as neighbors, if D′ can be obtained from
D by modifying one sample di ∈ D for some i ∈ [n].

Definition III.2 ((ε, δ)-Differential Privacy [4], [5]). A
(randomized) algorithm M with input domain Dn and
output range R is (ε, δ)-differentially private if for all
pairs of neighboring inputs D,D′ ∈ Dn, and every
measurable S ⊆ R, we have with probability over the
coin flips of M that:

Pr (M(D) ∈ S) ≤ eε · Pr (M(D′) ∈ S) + δ.

One of the most common techniques for achieving dif-
ferential privacy is the Gaussian mechanism, for which
we first need the L2-sensitivity of a function.

Definition III.3 (L2-sensitivity). A function f : Dn →
Rp has L2-sensitivity ∆ if

max
D,D′∈Dn s.t.

(D,D′) neighbors

‖f(D)− f(D′)‖ = ∆.

Lemma III.1 (Gaussian mechanism [38]). If a function
f : Dn → Rp has L2-sensitivity ∆, then the mechanism
M , which on input D ∈ Dn outputs f(D) + b, where
b ∼ N (0, σ2Ip×p) and σ = ∆

ε

(
1 +

√
2 log 1

δ

)
, satisfies

(ε, δ)-differential privacy. Here, N(0, σ2Ip×p) denotes
the p-dimensional zero-mean Gaussian distribution with
each dimension having variance σ2.

Lastly, we define Generalized Linear Models (GLMs).

Definition III.4 (Generalized Linear Model). For a
model space θ ∈ Rp, where p > 0, the sample space
D in a GLM is defined as the cartesian product of a
p-dimensional feature space X ⊆ Rp and a label space
Y , i.e., D = X × Y . Thus, each data sample di ∈ D

can be decomposed into a feature vector xi ∈ X , and a
label yi ∈ Y . Moreover, the loss function `(θ; di) for a
GLM is a function of xTi θ and yi.

IV. APPROXIMATE MINIMA PERTURBATION

In this section, we will describe Approximate Minima
Perturbation, a strengthened alternative to objective per-
turbation that provides DP guarantees in the case even
when the output of the algorithm is not the actual minima
of the perturbed objective function. The perturbed objec-
tive takes the form L(θ;D)+ Λ

2 ‖θ‖
2+〈b, θ〉, where b is a

random variable drawn from an appropriate distribution,
and Λ is an appropriately chosen regularization constant.
We make two crucial improvements over the original
objective perturbation algorithm [8], [9]:
• The privacy guarantee of objective perturbation holds

only at the exact minima of the underlying optimiza-
tion problem, which is never guaranteed in practice
given finite time. We show that AMP provides a
privacy guarantee even for an approximate solution.

• Earlier privacy analyses for objective perturbation [8],
[9] hold only when the loss function `(θ; d) is a loss
for a GLM (see Definition III.4), as they implicitly
make a rank-one assumption on the Hessian of the
loss 52`(θ; d). Via a careful perturbation analysis of
the Hessian, we extend the analysis to any convex loss
function under standard assumptions. It is important
to note that AMP reduces to objective perturbation if
the “approximate” minima condition is tightened to
getting the actual minima of the perturbed objective.

Algorithmic description: Given a dataset D =
{d1, d2, . . . , dn}, where each di ∈ D, we consider (ob-

jective) functions of the form L(θ;D) = 1
n

n∑
i=1

`(θ; di),

where θ ∈ Rp is a model, loss `(θ; di) has L2-Lipschitz
constant L for all di, is convex in θ, has a continuous
Hessian, and is β-smooth in both the parameters.

At a high level, Approximate Minima Perturbation
provides a convergence-based solution for objective per-
turbation. In other words, once the algorithm finds a
model θapprox for which the norm of the gradient of
the perturbed objective ∇Lpriv(θapprox;D) is within a
pre-determined threshold γ, it outputs a noisy version of
θapprox, denoted by θout. Since the perturbed objective
is strongly convex, it is sufficient to add Gaussian noise,
with standard deviation σ2 having a linear dependence
on the norm bound γ, to θapprox to ensure DP.

Details of AMP are provided in Algorithm 1. Note that
although we get a relaxed constraint on the regularization
parameter Λ (in Algorithm 1) if the loss function ` is a

loss for a GLM, the privacy guarantees hold for general
convex loss functions as well. The parameters (ε1, δ1)
within the algorithm represent the amount of the privacy
budget dedicated to perturbing the objective, with the
rest of the budget (ε2, δ2) being used for adding noise
to the approximate minima θapprox. On the other hand,
the parameter ε3 intuitively represents the part of the
privacy budget ε1 allocated to scaling the noise added to
the objective function. The remaining budget (ε1 − ε3)
is used to set the amount of regularization used.

Algorithm 1: Approximate Minima Perturbation
Input: Dataset: D = {d1, · · · , dn}; loss function:

`(θ; di) that has L2-Lipschitz constant L, is
convex in θ, has a continuous Hessian, and
is β-smooth for all θ ∈ Rp and all di;
Hessian rank bound parameter: r which is
the minimum of p and twice the upper
bound on the rank of `’s Hessian; privacy
parameters: (ε, δ); gradient norm bound: γ.

1 Set ε1, ε2, ε3, δ1, δ2 > 0 such that ε = ε1 + ε2,
δ = δ1 + δ2, and 0 < ε1 − ε3 < 1

2 Set Λ ≥ rβ
ε1−ε3

3 b1 ∼ N (0, σ2
1Ip×p), where σ1 =

(2L
n)
(

1+
√

2 log 1
δ1

)
ε3

4 Let Lpriv(θ;D) = 1
n

n∑
i=1

`(θ;Di) + Λ
2n‖θ‖

2 + bT1 θ

5 θapprox ← θ such that ‖∇Lpriv(θ;D)‖ ≤ γ

6 b2 ∼ N (0, σ2
2Ip×p), where σ2 =

(nγΛ)
(

1+
√

2 log 1
δ2

)
ε2

7 Output θout = θapprox + b2

Privacy and utility guarantees: Here, we provide the
privacy and utility guarantees for Algorithm 1. While
we provide a complete privacy analysis (Theorem 1),
we only state the utility guarantee (Theorem 2) as it is a
slight modification from previous work [9]. We provide
a proof for it in Appendix A for completeness.

Theorem 1 (Privacy guarantee). Algorithm 1 is (ε, δ)-
differentially private.

Proof Idea. For obtaining an (ε, δ)-DP guarantee for
Algorithm 1, we first split the output of the algorithm
into two parts: one being the exact minima of the per-
turbed objective, whereas the other containing the exact
minima, the approximate minima obtained in Step 5 of
the algorithm, as well as the Gaussian noise added to
it. For the first part, we bound the ratio of the density
of the exact minima taking any particular value, under
any two neighboring datasets, by eε1 with probability at

least 1−δ1. We first simplify such a ratio, as done in [8]
via the function inverse theorem, by transforming it to
two ratios: one involving only the density of a function
of the minima value and the input dataset, and the other
involving the determinant of this function’s Jacobian. For
the former ratio, we start by bounding the sensitivity of
the function using the L2-Lipschitz constant L of the loss
function. Then, we use the guarantees of the Gaussian
mechanism to obtain a high-probability bound (shown in
Lemma IV.1). We bound the latter ratio (in Lemma IV.2)
via a novel approach that uses the β-smoothness property
of the loss. Next, we use the the gradient norm bound
γ, and the strong convexity of the perturbed objective to
obtain an (ε2, δ2)-DP guarantee for the second part of
the split output. Lastly, we use the general composition
property of DP to get the statement of the theorem.

Proof. Define θmin = arg minθ∈Rp Lpriv(θ;D). Fix a
pair of neighboring datasets D∗, D′ ∈ Dn, and some
α ∈ Rp. First, we will show that:

pdfD∗(θmin = α)

pdfD′(θmin = α)
≤ eε1 w.p. ≥ 1− δ1. (1)

We define b(θ;D) = −∇L(θ;D)− Λθ
n for D ∈ Dn and

θ ∈ Rp. Changing variables according to the function
inverse theorem (Theorem 17.2 in [39]), we get

pdfD∗(θmin = α)

pdfD′(θmin = α)
=

pdf(b(α;D∗); ε1, δ1, L)

pdf(b(α;D′); ε1, δ1, L)

· |det(∇b(α;D′))|
|det(∇b(α;D∗))|

(2)

We will bound the ratios of the densities and the deter-
minants separately. First, we will show that for ε3 < ε1,
pdf(b(α;D∗);ε,δ,L)
pdf(b(α;D′);ε,δ,L) ≤ e

ε3 w.p. at least 1− δ1, and then we

will show that | det(∇b(α;D′))|
| det(∇b(α;D∗))| ≤ e

ε1−ε3 if ε1 − ε3 < 1.

Lemma IV.1. We define b(θ;D) = −∇L(θ;D)− Λθ
n for

D ∈ Dn, and θ ∈ Rp. Then, for any pair of neighboring
datasets D∗, D′ ∈ Dn, and ε3 < ε1, we have

pdf(b(α;D∗); ε1, δ1, L)

pdf(b(α;D′); ε1, δ1, L)
≤ eε3 w.p. at least 1− δ1.

Here, Lpriv(α;) is defined as in Algorithm 1.

Proof. Assume w.l.o.g. that di ∈ D∗ has been replaced
by d′i in D′. We first bound the L2-sensitivity of b(α;):

‖b(α;D∗)− b(α;D′)‖ ≤ ‖∇`(α; d′i)−∇`(α; di)‖
n

≤ 2L

n
,

where the last inequality follows as ‖∇`(α;)‖ ≤ L.

Setting σ1 ≥
(2L
n)
(

1+
√

2 log 1
δ1

)
ε3

for ε3 < ε1, we get
the statement of the lemma from the guarantees of the
Gaussian mechanism [38].

Lemma IV.2. Let b(θ;D) be defined as in Lemma IV.1.
Then for any pair of neighboring datasets D∗, D′ ∈ Dn,
if ε1 − ε3 < 1, we have

|det(∇b(α;D′))|
|det(∇b(α;D∗))|

≤ eε1−ε3 .

Proof. Assume w.l.o.g. that di ∈ D∗ is replaced by d′i
in D′. Let A = n∇2L(α;D∗), and E = ∇2`(α; d′i) −
∇2`(α; di). As the (p× p) matrix E is the difference of
the Hessians of the loss of two individual samples, we
can define a bound r on the rank of E as follows:

r = min
{
p, 2 ·

(
upper bound on rank of ∇2`(α;)

)}
Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of A, and
λ′1 ≤ λ′2 ≤ · · · ≤ λ′p be the eigenvalues of A+E. Thus,

| det(∇b(α;D′))|
| det(∇b(α;D∗))| =

det
(

A+E+ΛIp
n

)
det
(

A+ΛIp
n

) =

p∏
i=1

(
λ′i + Λ

)
p∏

i=1

(λi + Λ)

=

p∏
i=1

(
1 +

λ′i − λi

λi + Λ

)

≤
p∏

i=1

(
1 +
|λ′i − λi|

Λ

)

= 1 +

p∑
i=1

|λ′i − λi|
Λ

+
∑

i,j∈[p],
i6=j

∏
k∈{i,j}

|λ′k − λk|

Λ2
+ · · ·

≤ 1 +
rβ

Λ
+

(rβ)2

Λ2
+ · · · ≤ Λ

Λ− rβ

The first inequality follows since A is a positive semi-
definite matrix (as ` is convex) and thus, λj ≥ 0 for all
j ∈ [p]. The second inequality follows as i) the rank of
E is at most r, ii) both A and A+E are positive semi-
definite (so λj , λ′j ≥ 0 for all j ∈ [p]), and iii) we have
an upper bound β on the eigenvalues of A and A + E
due to `(θ; dj) being convex in θ, having a continuous
Hessian, and being β-smooth. The last inequality follows
if Λ > rβ. Also, we want Λ

Λ−rβ ≤ exp(ε1 − ε3), which
implies Λ ≥ rβ

1−exp(ε3−ε1) ≥
rβ

ε1−ε3 . Both conditions are
satisfied by setting Λ = rβ

ε1−ε3 as ε1 − ε3 < 1.

From Equation 2, and Lemmas IV.1 and IV.2, we get
that pdfD∗ (θmin=α)

pdfD′ (θmin=α) ≤ e
ε1 w.p. ≥ 1−δ1. In other words,

θmin is (ε1, δ1)-differentially private.

Now, since we can write θout as θout = θmin +
(θapprox − θmin + b2), we will prove that releasing
(θapprox − θmin + b2) is (ε2, δ2)-differentially private.

Lemma IV.3. For D ∈ Dn, let γ ≥ 0 be chosen inde-
pendent of D, and let θmin = arg minθ∈Rp Lpriv(θ;D).
If θapprox ∈ Rp s.t. ‖∇Lpriv(θapprox;D)‖ ≤ γ, then re-
leasing (θapprox−θmin+b2), where b2 ∼ N (0, σ2

2Ip×p)

for σ2 =
(nγΛ)

(
1+
√

2 log 1
δ2

)
ε2

, is (ε2, δ2)-DP.

Proof. We start by bounding the L2-norm of (θapprox−
θmin):

‖θapprox − θmin‖

≤ n‖∇Lpriv(θapprox;D)−∇Lpriv(θmin;D)‖
Λ

≤ nγ

Λ
(3)

The first inequality follows as Lpriv is Λ
n -strongly

convex, and the second inequality follows as
∇Lpriv(θmin;D) = 0 and ∇Lpriv(θapprox;D) ≤ γ.

Now, setting σ2 =
(nγΛ)

(
1+
√

2 log 1
δ2

)
ε2

, we get the
statement of the lemma by the properties of the
Gaussian mechanism [38].

As ε1 + ε2 = ε, and δ1 + δ2 = δ, we get the privacy
guarantee of Algorithm 1 by Equation 1, Lemma IV.3,
and the general composition property of DP [40].

Next, we provide the utility guarantee (in terms of
excess empirical risk) for Algorithm 1 in Theorem 2. For
completeness, we provide a proof for it in Appendix A.

Theorem 2 (Utility guarantee (adapted
from [9])). Let θ̂ be the true unconstrained

minimizer of L(θ;D) = 1
n

n∑
i=1

`(θ; di), and

r = min {p, 2 · (upper bound on rank of `’s Hessian)}.
In Algorithm 1, if εi = ε

2 for i ∈ {1, 2}, ε3 =
max

{
ε1
2 , ε1 − 0.99

}
, δj = δ

2 for j ∈ {1, 2},
and we set the regularization parameter

Λ = Θ

(
1
‖θ̂‖

(
L
√
rp log 1/δ

ε +

√
n2Lγ
√
p log 1/δ

ε

))
such that it satisfies the constraint in Step 2, then the
following is true:

E
(
L(θout;D)− L(θ̂;D)

)

= O

‖θ̂‖L
√
rp log 1

δ

nε
+ ‖θ̂‖

√√√√Lγ
√
p log 1

δ

ε

 .

Remark: For loss functions of Generalized Linear Mod-
els, we have r = 2. Here, for small values of γ (for
example, γ = O

(
1
n2

)
), the excess empirical risk of

Approximate Minima Perturbation is asymptotically the
same as that of objective perturbation [9], and has a
better dependence on n than that of Private Permutation-
based SGD [12]. Specifically, the dependence is ∝ 1

n for
Approximate Minima Perturbation, and ∝ 1√

n
for Private

PSGD.

Towards Hyperparameter-free Approximate Minima
Perturbation: AMP can be considered to have the
following hyperparameters: the Lipschitz constant L, and
the privacy parameters ε2, δ2, and ε3 which split the
privacy budget within the algorithm. A data-independent
approach for setting these parameters can eliminate
the need for hyperparameter tuning with this approach,
making it convenient to deploy in practice.

For practical applications, given a sensitive dataset
and a convex loss function, the L hyperparameter can
be thought of as a trade-off between the sensitivity of
the loss and the amount of external interference required
to achieve that sensitivity, for instance, sample clipping
(defined in Section V-A) on the data. In the next section,
we provide a hyperparameter-free variant of AMP that
has performance comparable to the standard variant in
which all the hyperparameters are tuned.

V. EXPERIMENTAL RESULTS

Our evaluation seeks to answer two major research
questions:
1) What is the cost (to accuracy) of privacy? How

close can a DP model come to the non-private
baseline? For real-world use cases, is the cost of
privacy low enough to make DP learning practical?

2) Which algorithm provides the best accuracy in
practice? Is there a total order on the available
algorithms? Does this ordering differ for datasets
with different properties?

Additionally, we also attempt to answer the following
question which can result in a significant advantage for
the deployment of a DP model in practice:
3) Can Approximate Minima Perturbation be de-

ployed without hyperparameter tuning? Can its
hyperparameters (L, ε2, δ2, and ε3) be set in a data-
independent manner?

Summary of results: Question #1: Our results demon-
strate that for datasets of sufficient size, the cost of
privacy is negligible. Experiments 1 (on low-dimensional
datasets), 2 (on high-dimensional datasets), and 3 (on

real-world datasets obtained in collaboration with Uber)
evaluate the cost of privacy using logistic loss. Our
results show that for large datasets, a DP model exists
that approaches the accuracy of the non-private baseline
at reasonable privacy budgets. Experiment 3 shows that
for the larger datasets common in practical settings,
a privacy-preserving model can produce even better
accuracy than the non-private one, which suggests that
privacy-preserving learning is indeed practical.

We also present the performance of private algorithms
using Huber SVM loss (on all the datasets mentioned
above) in Appendix B. The general trends from the
experiments using Huber SVM loss are identical to those
obtained using logistic loss.

Question #2: Our experiments demonstrate that AMP
generally provides the best accuracy among all the
evaluated algorithms. Moreover, experiment 2 shows
that under specific conditions, private Frank-Wolfe can
provide the best accuracy. In all the regimes, the results
generally show an improvement over other approaches.

Question #3: Our experiments also demonstrate that
a simple data-independent method can be used to set
L, ε2, δ2, and ε3 for AMP, and that this method provides
good accuracy across datasets. For most values of ε,
our data-independent approach provides nearly the same
accuracy as the version tuned using a grid search (which
may be non-private).

A. Experiment Setup

Algorithms evaluated: Our evaluation includes one
algorithm drawn from each of the major approaches
to private convex optimization: objective perturbation,
output perturbation, private gradient descent, and the
private Frank-Wolfe algorithm. For each approach, we
select the best-known algorithm and configuration.

For objective perturbation, we implement AMP (Al-
gorithm 1) as it is the only practically feasible objective
perturbation approach3. For all the experiments, we tune
the value of the hyperparameters L, ε2, δ2, and ε3 using
the grid search described later.

We also evaluate a hyperparameter-free variant of
AMP that sets the hyperparameters L, ε2, δ2 and ε3
independent of the data. We describe the strategy in
detail towards the end of this subsection.

For output perturbation, we implement Private
Perturbation-based SGD (PSGD) [12], as it is the only
practically feasible variant of output perturbation3. We
evaluate both the variants, with minibatching, proposed

3For all variants pertaining to the standard regime in [8], obtaining
some exact minima is necessary for achieving a privacy guarantee.

TABLE I
DATASETS USED IN OUR EVALUATION

Dataset # Samples # Dim. # Classes
Low-Dimensional Datasets (Public)

Synthetic-L 10,000 20 2
Adult 45,220 104 2

KDDCup99 70,000 114 2
Covertype 581,012 54 7

MNIST 65,000 784 10
High-Dimensional Datasets (Public)

Synthetic-H 5,000 5,000 2
Gisette 6,000 5,000 2

Real-sim 72,309 20,958 2
RCV1 50,000 47,236 2

Real-World Datasets (Uber)
Dataset #1 4m 23 2
Dataset #2 18m 294 2
Dataset #3 18m 20 2
Dataset #4 19m 70 2

in [12]: convex (Algorithm 3), and strongly convex
(Algorithm 4). For the convex variant, we evaluate all
three proposed learning rate schemes (constant learning
rate, decreasing learning rate, and square-root learning
rate). We include results only for constant learning rate,
as our experiments show that this scheme produces the
most accurate models.

For private gradient descent, we implement a variant
of the private SGD algorithm originally proposed in [16].
Our variant (Algorithm 2) leverages the Moments Ac-
countant [15], incorporates minibatching, and sets the
noise parameter based on the desired number of itera-
tions (as compared to a fixed n2 iterations in [16]).

For private Frank-Wolfe, we implement the version
(Algorithm 5) originally proposed in [17]. This algorithm
performs constrained optimization by design. Following
the advice of [26], we use a decreasing learning rate for
better accuracy guarantees. Unlike the other algorithms,
private Frank-Wolfe has nearly dimension-independent
error bounds, so it should be expected to perform com-
paratively better on high-dimensional datasets.

Pseudocodes for all the evaluated algorithms are pro-
vided in Appendix C for reference. For each algorithm,
we evaluate the variant that provides (ε, δ)-differential
privacy. Most algorithms can also provide ε-differential
privacy at an additional cost to accuracy.

Datasets: Table I lists the public datasets used in our
experimental evaluation. Each of these datasets is avail-
able for download, and our open-source release con-
tains scripts for downloading and pre-processing these
datasets. It also contains scripts for generating both the
synthetic datasets. As RCV1 has multi-label classifica-
tion over 103 labels (with most of the labels being used

for a very small proportion of the dataset), for this dataset
we consider the task of predicting whether a sample is
categorized under the most frequently used label or not.

The selected datasets include both low-dimensional
and high-dimensional datasets. We define low-
dimensional datasets to be ones where n � p (where
n is the number of samples and p is the number of
dimensions). High-dimensional datasets are defined
as those for which n and p are on roughly the same
scale, i.e. n ≤ p (or nearly so). We consider the
Synthetic-H, Gisette, Real-sim, and RCV1 datasets to
be high-dimensional.

To obtain training and testing sets, we randomly
shuffle the dataset, take the first 80% as the training set,
and the remaining 20% as the testing set.

Sample clipping: Each of the algorithms we evalu-
ate has the requirement that the loss have a Lipschitz
constant. We can enforce this requirement for the loss
functions we consider by bounding the norm for each
sample. We can accomplish this by pre-processing the
dataset, but it must be done carefully to preserve DP.

For all the algorithms except private Frank-Wolfe,
to make the loss have an L2-Lipschitz constant L, we
bound the influence of each sample (xi, yi) by clip-
ping the feature vector xi to

(
xi ·min

(
1, L
‖xi‖

))
. This

transformation is independent of other samples, and thus
preserves DP; it has also been previously used, e.g. in
[15]. As the private Frank-Wolfe algorithm requires the
loss to have a relaxed L1-Lipschitz constant L, it suffices
(using Theorem 1 from [41]) to bound the L∞-norm of
each sample (xi, yi) by L. We achieve this by clipping
each dimension xi,j , where j ∈ [d], to min (xi,j , L).

Hyperparameters: Each of the evaluated algorithms
has at least one hyperparameter. The values for these
hyperparameters should be tuned to provide the best
accuracy, but the tuning should be done privately in order
to guarantee end-to-end differential privacy. Although a
number of differentially private hyperparameter tuning
algorithms have been proposed [8], [14], [15] to address
this problem, they add more variance in the performance
of each algorithm, thus making it more difficult to
compare the performance across different algorithms.

In order to provide a fair comparison between algo-
rithms, we use a grid search to determine the best value
for each hyperparameter. Our grid search considers the
hyperparameter values listed in Table II. In addition to
the standard algorithm hyperparameters (Λ, η, T, k), we
tune the clipping parameter L used in pre-processing
the datasets, and the constraint on the model space

TABLE II
HYPERPARAMETER & PRIVACY PARAMETER VALUES

Hyperparameter Values Considered
Λ (regularization factor) 10−5, 10−4, 10−3, 10−2, 0

η (learning rate) 0.001, 0.01, 0.1, 1
T (number of iterations) 5, 10, 100, 1000, 5000

k (minibatch size) 50, 100, 300
L (clipping threshold) 0.1, 1, 10, 100
C (model constraint) 1, 10

f (output budget fraction) 0.001, 0.01, 0.1, 0.5
f1 (privacy budget fraction) 0.9, 0.92, 0.95, 0.98, 0.99

Privacy Parameter Values Considered
ε 10−2, 10−

3
2 , 10−1, 10−

1
2 ,

100, 10
1
2 , 101

δ 1
n2

used by private Frank-Wolfe, Private SGD when using
regularized loss, and Private strongly convex PSGD. The
parameter C controls the size of the L1/L2-ball from
which models are selected by private Frank-Wolfe/the
other algorithms respectively. For AMP, we set ε2 = f ·ε,
δ2 = f ·δ, and tune for f . Here, f denotes the fraction of
the budget (ε, δ) that is allocated to (ε2, δ2). Also, since
the valid range of the hyperparameter ε3 depends on the
value of ε1, we set ε3 = f1 · ε1, and tune for f1. We also
ensure that the constraint on ε3 in Line 3 of Algorithm 1
is satisfied. Note that tuning hyperparameters may be
non-private, but it enables a direct comparison of the
algorithms themselves.

We consider a range of values for the privacy pa-
rameter ε. Following Wu et al. [12], we set the privacy
parameter δ = 1

n2 , where n is the size of the training
data. The complete set of values considered is listed
in Table II. For multiclass classification datasets such
as MNIST and Covertype, we implement the one-vs-all
strategy by training a binary classifier for each class, and
split ε and δ equally among the binary classifiers so that
we can achieve an overall (ε, δ)-DP guarantee by using
general composition [40].

Algorithm Implementations: The implementations
used in our evaluation correspond to the pseudocode
listings in Appendix C, are written in Python, and
are available in our open source release [13]. For Ap-
proximate Minima Perturbation, we define the loss and
gradient according to Algorithm 1, and leverage SciPy’s
minimize procedure to find the approximate minima.

For all datasets, our implementation is able to achieve
γ = 1

n2 , where n is the size of the training data. For
low-dimensional datasets, our implementation of AMP
uses SciPy’s BFGS solver, for which we can specify
the desired norm bound γ. The BFGS algorithm stores

the full Hessian of the objective, which does not fit in
memory for the sparse high-dimensional datasets in our
study. For these, we define an alternative low-memory
implementation using SciPy’s L-BFGS-B solver, which
does not store the full Hessian.

Experiment procedure: Our experiment setup is de-
signed to find the best possible accuracy achievable for
a given setting of the privacy parameters. To ensure a
fair comparison, we begin every run of each algorithm
with the initial model 0p. Because each of the evaluated
algorithms introduces randomness due to noise, we train
10 independent models for each combination of the
hyperparameter setting. We report the mean accuracy and
standard deviation for the combination of the hyperpa-
rameter setting with the highest mean accuracy over the
10 independent runs.4

Differences with the setting in [12]: Although both
the studies have 3 datasets in common (Covertype, KD-
DCup99, and MNIST), our setting is slightly different
from [12] for all 3 of them. For Covertype, our study
uses all 7 classes, while [12] uses a binary version. For
KDDCup99, we use a 10% sample of the full dataset (as
in [42]), while [12] uses the full dataset. For MNIST,
we use all 784 dimensions, while [12] uses random
projection to reduce the dimensionality to 50.

The results we obtain for both the variants of the
Private PSGD algorithm [12] are based on faithful im-
plementations of those algorithms. We tune the hyperpa-
rameters for both, using the grid search described earlier.

Non-private baseline: Note that one of the main objec-
tives of this study is to determine the cost of privacy
in practice for convex optimization. Hence, to provide
a point of comparison for our results, we also train a
non-private baseline model for each experiment. We use
Scikit-learn’s LogisticRegression class to train
this model on the same training data as the private
algorithms, and test its accuracy on the same testing data
as the private algorithms. We do not perform sample
clipping when training this model.

Strategy for Hyperparameter-free Approximate Min-
ima Perturbation: Now, we describe a data-independent
approach for setting Approximate Minima Perturbation’s
only hyperparameters, L, ε2, δ2, and ε3, for both the loss
functions we consider (see Section V-B). For L, we find
that setting L = 1 achieves a good trade-off between

4The results shown are for hyperparameters tuned via the mean test
set accuracy. Since all the considered algorithms aim to minimize the
empirical loss, we also conducted experiments by tuning via the mean
training set accuracy. Both settings provided visibly identical results.

the amount of noise added for perturbing the objective,
and the information loss after sample clipping across all
datasets. Next, we consider only the synthetically gener-
ated datasets for setting the hyperparameters specific to
AMP. Fixing γ = 1

n2 , we find that setting ε2 = 0.01 · ε
and δ2 = 0.01 · δ achieves a good trade-off between
the budget for perturbing the objective, and the amount
of noise that its approximate minima can tolerate. For
setting ε3, we consider two separate cases:
• For ε1 = 0.99 · ε, and ε3 = f1 · ε1, we see that

setting f1 = 0.99 for ε1 = 0.0099, f1 = 0.95
for ε1 ∈ {0.0313, 0.099}, and f1 = 0.9 for ε1 ∈
{0.313, 0.99, 3.13, 9.99} yields a good accuracy for
Synthetic-L. Hence, we observe that for very low
values of ε1, a good accuracy is yielded by ε3 close
to ε1 (i.e., most of the budget is used to reduce the
scale of the noise, and the influence of regularization
is kept large). As ε1 increases, we see that it is more
beneficial to reduce the effects of regularization. We
fit a basic polynomial curve of the form y = a+bx−c,
where a, b, c > 0, to the above-stated values to get
a dependence of f1 (the privacy budget fraction) in
terms of ε1. We combine it with the lower bound
imposed on f1 by Theorem 1 (for instance, we require
f1 ≥ 0.9 for ε1 = 9.99) to obtain the following data-
independent relationship between ε1 and ε3 for low-
dimensional datasets:

ε3 = max

{
min

{
0.887 +

0.019

ε0.373
1

, 0.99

}
, 1− 0.99

ε1

}
· ε1

• For Synthetic-H, we see that setting f1 = 0.97 yields
a good accuracy for all the values of ε1 considered.
Thus, combining it with the lower bound imposed on
f1 by Theorem 1, we obtain the following relationship
for high-dimensional datasets:

ε3 = max

{
0.97, 1− 0.99

ε1

}
· ε1

Note that the results for this strategy are consistent for
both loss functions across all the public and the real-
world datasets considered, none of which were used
in defining the strategy except for setting the Lipschitz
constant L of the loss. They can be considered to be
effectively serving as test-cases for the strategy.

B. Loss Functions

Our evaluation considers the loss functions for two
commonly used models: logistic regression and Huber
SVM. This section contains results for logistic regres-
sion; results for Huber SVM are available in Appendix B.

Logistic regression: The L2-regularized logistic regres-
sion loss function on a sample (x, y) with y ∈ {1,−1}
is `(θ, (x, y)) = ln(1 + exp(−y〈θ, x〉)) + Λ

2 ‖θ‖
2.

Our experiments consider both the regularized and un-
regularized (i.e., Λ = 0) settings. The un-regularized
version has L2-Lipschitz constant L when for each sam-
ple x, ‖x‖ ≤ L. It is also L2-smooth. The regularized
version has L2-Lipschitz constant L+ΛC when for each
sample x, ‖x‖ ≤ L, and for each model θ, ‖θ‖ ≤ C. It
is also (L2 + Λ)-smooth, and Λ-strongly convex.

C. Experiment 1: Low-dimensional Datasets

We present the results of our experiments with logistic
regression on low-dimensional data in Figure 2. All four
algorithms perform better in comparison with the non-
private baseline for binary classification tasks (Synthetic-
L, Adult, and KDDCup99) than for multi-class problems
(Covertype and MNIST), because ε and δ must be split
among the binary classifiers built for each class.

Figure 1 contains precise accuracy numbers for each
dataset for reasonably low values of ε. These results
provide a more precise comparison between the four
algorithms, and quantify the accuracy loss versus the
non-private baseline for each one. Across all datasets,
Approximate Minima Perturbation generally provides
the most accurate models across ε values.

D. Experiment 2: High-dimensional Datasets

For this experiment, we repeat the procedure in Ex-
periment 1 on high-dimensional data, and present the
results in Figure 2. The results are somewhat differ-
ent in the high-dimensional regime. We observe that
although Approximate Minima Perturbation generally
outperforms all the other algorithms, the private Frank-
Wolfe algorithm performs the best on Synthetic-H. From
prior works [11], [17], we know that both objective
perturbation and the private Frank-Wolfe have near
dimension-independent utility guarantees when the loss
is of a GLM, and we indeed observe this expected
behavior from our experiments. As in experiment 1, we
present precise accuracy numbers for ε = 0.1 in Figure 1.

Private Frank-Wolfe works best when the optimal
model is sparse (i.e., a few important features charac-
terize the classification task well), as in the Synthetic-H
dataset, which is well-characterized by just ten important
features. This is because private Frank-Wolfe adds at
most a single feature to the model at each iteration, and
noise increases with the number of iterations. However,
noise does not increase with the total number of features,
since it scales with the bound on the `∞-norm of the
samples. This behavior is in contrast to Approximate
Minima Perturbation (and the other algorithms consid-
ered in our evaluation), for which noise scales with the

D
at

as
et

N
P

ba
se

lin
e

A
M

P

H
-F

A
M

P

P-
SG

D

P-
PS

G
D

P-
SC

PS
G

D

P-
FW

Low-Dimensional Binary Datasets (ε = 0.1)
Synthetic-L 94.9 83.1 80.6 81.6 81.7 76.4 81.8

Adult 84.8 79.1 78.7 78.5 77.4 77.2 76.9
KDDCup99 99.1 97.5 97.4 98.0 98.1 95.8 96.8

Low-Dimensional Multi-class Datasets (ε = 15)
Covertype 71.2 64.3 63.5 65.0 62.4 62.2 63.0

MNIST 91.5 71.9 70.5 68.6 68.0 63.2 65.0
High-Dimensional Datasets (ε = 0.1)

Synthetic-H 95.8 53.2 51.4 52.8 53.5 52.0 57.6
Gisette 96.6 62.8 59.7 61.5 62.3 61.3 58.3

Real-sim 93.3 73.1 71.9 66.3 66.1 65.6 69.8
RCV1 93.5 64.2 59.9 55.1 58.9 56.2 64.1

Real-World Datasets (ε = 0.1)
Dataset #1 75.3 75.36 75.3 75.3 75.3 75.3 75.3
Dataset #2 72.2 70.4 70.1 69.8 69.5 68.9 68.6
Dataset #3 73.6 71.9 71.8 71.8 71.4 71.2 71.6
Dataset #4 82.1 81.7 81.7 81.7 81.5 81.3 81.0

Fig. 1. Accuracy results (in %) for logistic regression. For each dataset,
the result in bold represents the DP algorithm with the best accuracy
for that dataset. A key for the abbreviations used for the algorithms is
provided in Table III.

TABLE III
LIST OF ABBREVIATIONS USED FOR ALGORITHMS

Abbreviation Full-form
NP baseline Non-private baseline

AMP Approximate Minima Perturbation
H-F AMP Hyperparameter-free AMP

P-SGD Private SGD
P-PSGD Private PSGD

P-SCPSGD Private strongly convex PSGD
P-FW Private Frank-Wolfe

bound on the `2-norm of the samples. Private Frank-
Wolfe therefore approaches the non-private baseline
better than the other algorithms for high-dimensional
datasets with sparse models, even at low values of ε.

E. Experiment 3: Real-world Use Cases

For this experiment, we repeat the procedure in Ex-
periment 1 on real-world use cases, obtained in collab-
oration with Uber. These use cases are represented by
four datasets, each of which has separately been used to
train a production model deployed at Uber. The details
of these datasets are listed in Table I. The results of this

5We report the accuracy for ε = 1 for multi-class datasets, as com-
pared to ε = 0.1 for datasets with binary classification, because multi-
class classification is a more difficult task than binary classification.

6For Dataset #1, AMP slightly outperforms even the NP baseline,
as can been seen from Figure 2.

10 2 10 1 100 101

Epsilon

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

10 2 10 1 100 101

Epsilon

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Synthetic-L (Low-Dim) Adult (Low-Dim) KDDCup99 (Low-Dim)

10 2 10 1 100 101

Epsilon

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

20

40

60

80

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Covertype (Low-Dim) MNIST (Low-Dim) Synthetic-H (High-Dim)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Gisette (High-Dim) Real-sim (High-Dim) RCV-1 (High-Dim)

10 2 10 1 100 101

Epsilon

75.30

75.32

75.34

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

60

65

70

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

71

72

73

74

Ac
cu

ra
cy

 (%
)

Dataset #1 (Real-World) Dataset #2 (Real-World) Dataset #3 (Real-World)

10 2 10 1 100 101

Epsilon

80.0

80.5

81.0

81.5

82.0

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Non-private baseline
Approximate Minima Perturbation
Hyperparameter-free Approximate Minima Perturbation
Private SGD
Private PSGD
Private Strongly-convex PSGD
Private Frank-Wolfe

Dataset #4 (Real-World) Color-coded Legend for all the plots
Fig. 2. Accuracy results for logistic regression on low-dimensional, high-dimensional and real-world datasets. Horizontal axis depicts varying
values of ε; vertical axis shows accuracy (in %) on the testing set.

experiment are depicted in Figure 2, with more precise
results for ε = 0.1 in Figure 1.

The real-world datasets are much larger than the
datasets considered in Experiment 1. The difference in
scale is reflected in the results: all of the algorithms
converge to the non-private baseline for very low values
of ε. These results suggest that in many practical settings,
the cost of privacy is negligible. In fact, for Dataset
#1, some differentially private models exhibit a slightly
higher accuracy than the non-private baseline for a
wide range of ε. For instance, even Hyperparameter-
free AMP, which is end-to-end differentially private
as there is no tuning involved, yields an accuracy of
75.34% for ε = 0.1 versus the non-private baseline of
75.33%. Some prior works [18], [19] have theorized that
differential privacy could act as a type of regularization
for the system, and improve the generalization error; this
empirical result of ours aligns with this claim.

F. Discussion

For large datasets, the cost of privacy is low. Our
results confirm the expectation that very accurate dif-
ferentially private models exist for large datasets. Even
for relatively small datasets like Adult and KDDCup99
(where n < 100, 000), our results show that a differen-
tially private model has accuracy within 6% of the non-
private baseline even for a conservative privacy setting
of ε = 0.1.

For all the larger real-world datasets (n > 1m),
the accuracy of the best differentially private model is
within 4% of the non-private baseline even for the most
conservative privacy value considered (ε = 0.01). For
ε = 0.1, it is within 2% of the baseline for two of these
datasets, essentially identical to the baseline for one of
them, and even slightly higher than the baseline for one.

These results suggest that for realistic deployments
on large datasets (n > 1m, and low-dimensional), a
differentially private model can be deployed without
much loss in accuracy.

Approximate Minima Perturbation almost always
provides the best accuracy, and is easily deployable in
practice. Our results in all the experiments demonstrate
that among the available algorithms for differentially pri-
vate convex optimization, our Approximate Minima Per-
turbation approach almost always produces models with
the best accuracy. For four of the five low-dimensional
datasets, and all the public high-dimensional datasets we
considered, Approximate Minima Perturbation provided
consistently better accuracy than the other algorithms.
Under some conditions like high-dimensionality of the

datasets, and sparsity of the optimal predictive model
for it, private Frank-Wolfe does give the best perfor-
mance. Unlike Approximate Minima Perturbation, how-
ever, no hyperparameter-free variant of private Frank-
Wolfe exists—and suboptimal hyperparameter values
can reduce accuracy significantly for this algorithm.

As mentioned earlier, Approximate Minima Perturba-
tion also has important properties that enable its practical
deployment. It can leverage any off-the-shelf optimizer
as a black box, allowing implementations to use existing
scalable optimizers (our implementation uses Scipy’s
minimize). None of the other evaluated algorithms
have these properties.

Hyperparameter-free Approximate Minima Pertur-
bation provides good utility. As demonstrated by our
experimental results, AMP can be deployed without tun-
ing hyperparameters, at little cost to accuracy. Our data-
independent approach therefore enables deployment—
without significant loss of accuracy—in practical settings
where public data may not be available for tuning.

VI. CONCLUSION

This paper takes two important steps towards practi-
cal differentially private convex optimization. We have
presented Approximate Minima Perturbation, a novel
algorithm for differentially private convex optimization
that does not require the optimization process to reach
the true minima. It can leverage any off-the-shelf solver,
and can be employed without hyperparameter tuning.
Therefore, it is amenable to be deployed in practice.

We have also performed an extensive empirical eval-
uation of state-of-the-art approaches for differentially
private convex optimization. To encourage the further
development and deployment, we have released the
implementations used in our evaluation, and the bench-
marking scripts used to obtain the datasets and perform
the experiments. This benchmark provides a standard
point of comparison for further advances in differentially
private convex optimization.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Adam Smith for
the discussions regarding the main privacy proof of
AMP, and the anonymous reviewers for their help-
ful comments. This material is in part based upon
work supported by NSF CCF-1740850, DARPA contract
#N66001-15-C-4066, the Center for Long-Term Cyber-
security, and Berkeley Deep Drive. Any opinions, find-
ings, conclusions, or recommendations expressed in this
material are those of the authors, and do not necessarily
reflect the views of the sponsors.

REFERENCES

[1] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’15. New York,
NY, USA: ACM, 2015, pp. 1322–1333.

[2] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodol-
ogy for formalizing model-inversion attacks,” in 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), June 2016,
pp. 355–370.

[3] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 3–18.

[4] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation.”
in EUROCRYPT, 2006.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Theory of Cryp-
tography Conference. Springer, 2006, pp. 265–284.

[6] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized
aggregatable privacy-preserving ordinal response,” in Proceed-
ings of the 2014 ACM SIGSAC conference on computer and
communications security. ACM, 2014, pp. 1054–1067.

[7] “Apple tries to peek at user habits without violating privacy,” The
Wall Street Journal, 2016.

[8] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization,” JMLR, 2011.

[9] D. Kifer, A. Smith, and A. Thakurta, “Private convex empirical
risk minimization and high-dimensional regression,” Journal of
Machine Learning Research, vol. 1, p. 41, 2012.

[10] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient
descent with differentially private updates,” in Global Conference
on Signal and Information Processing (GlobalSIP), 2013 IEEE.
IEEE, 2013, pp. 245–248.

[11] P. Jain and A. Thakurta, “(near) dimension independent risk
bounds for differentially private learning,” in Proceedings of the
31st International Conference on International Conference on
Machine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014,
pp. I–476–I–484.

[12] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton,
“Bolt-on differential privacy for scalable stochastic gradient
descent-based analytics,” in Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, ser. SIGMOD
’17. New York, NY, USA: ACM, 2017, pp. 1307–1322.

[13] “Differentially Private Convex Optimization Benchmark,”
2017. [Online]. Available: https://github.com/sunblaze-ucb/
dpml-benchmark

[14] K. Chaudhuri and S. Vinterbo, “A stability-based validation pro-
cedure for differentially private machine learning,” in Proceed-
ings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’13. USA: Curran
Associates Inc., 2013, pp. 2652–2660.

[15] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential pri-
vacy,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 308–318.

[16] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk
minimization: Efficient algorithms and tight error bounds,” in
Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on. IEEE, 2014, pp. 464–473.

[17] K. Talwar, A. Thakurta, and L. Zhang, “Private empirical risk
minimization beyond the worst case: The effect of the constraint
set geometry,” CoRR, vol. abs/1411.5417, 2014.

[18] R. Bassily, A. D. Smith, and A. Thakurta, “Private empirical risk
minimization, revisited,” CoRR, vol. abs/1405.7085, 2014.

[19] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “Generalization in adaptive data analysis and holdout
reuse,” in Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, pp. 2350–2358.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] S. Bubeck et al., “Convex optimization: Algorithms and com-
plexity,” Foundations and Trends R© in Machine Learning, vol. 8,
no. 3-4, pp. 231–357, 2015.

[22] L. Zhang, T. Yang, and R. Jin, “Empirical risk minimization for
stochastic convex optimization: O(1/n)- and O(1/n2)-type of
risk bounds,” in Proceedings of the 2017 Conference on Learning
Theory, ser. Proceedings of Machine Learning Research, S. Kale
and O. Shamir, Eds., vol. 65. Amsterdam, Netherlands: PMLR,
07–10 Jul 2017, pp. 1954–1979.

[23] V. Feldman, “Generalization of erm in stochastic convex opti-
mization: The dimension strikes back,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Asso-
ciates, Inc., 2016, pp. 3576–3584.

[24] A. Smith and A. Thakurta, “Differentially private feature selec-
tion via stability arguments, and the robustness of the lasso,” in
COLT, 2013.

[25] M. Frank and P. Wolfe, “An algorithm for quadratic program-
ming,” Naval Research Logistics (NRL), vol. 3, no. 1-2, pp. 95–
110, 1956.

[26] M. Jaggi, “Revisiting frank-wolfe: projection-free sparse convex
optimization,” in Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning-Volume
28. JMLR. org, 2013, pp. I–427.

[27] S. Lacoste-Julien and M. Jaggi, “An affine invariant linear
convergence analysis for frank-wolfe algorithms,” arXiv preprint
arXiv:1312.7864, 2013.

[28] ——, “On the global linear convergence of frank-wolfe opti-
mization variants,” in Advances in Neural Information Processing
Systems, 2015, pp. 496–504.

[29] S. Lacoste-Julien, “Convergence Rate of Frank-Wolfe for Non-
Convex Objectives,” Jun. 2016, 6 pages.

[30] P. Jain, P. Kothari, and A. Thakurta, “Differentially private online
learning.” in COLT, vol. 23, 2012, pp. 24–1.

[31] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy
and statistical minimax rates,” in Foundations of Computer Sci-
ence (FOCS), 2013 IEEE 54th Annual Symposium on. IEEE,
2013, pp. 429–438.

[32] A. G. Thakurta and A. Smith, “(nearly) optimal algorithms
for private online learning in full-information and bandit set-
tings,” in Advances in Neural Information Processing Systems
26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds., 2013, pp. 2733–2741.

[33] P. Jain and A. Thakurta, “Differentially private learning with
kernels,” in ICML, 2013.

[34] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett,
“Functional mechanism: Regression analysis under differential
privacy,” Proc. VLDB Endow., vol. 5, no. 11, pp. 1364–1375,
Jul. 2012.

[35] X. Wu, M. Fredrikson, W. Wu, S. Jha, and J. F. Naughton,
“Revisiting differentially private regression: Lessons from learn-
ing theory and their consequences,” CoRR, vol. abs/1512.06388,
2015.

[36] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sept 2015, pp. 909–910.

[37] Z. Ji, Z. C. Lipton, and C. Elkan, “Differential privacy and ma-
chine learning: a survey and review,” CoRR, vol. abs/1412.7584,
2014.

https://github.com/sunblaze-ucb/dpml-benchmark
https://github.com/sunblaze-ucb/dpml-benchmark

[38] A. Nikolov, K. Talwar, and L. Zhang, “The geometry of differen-
tial privacy: The sparse and approximate cases,” in Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing,
ser. STOC ’13. New York, NY, USA: ACM, 2013, pp. 351–360.

[39] P. Billingsley, Probability and Measure, ser. Wiley Series in
Probability and Statistics. Wiley, 1995.

[40] C. Dwork, A. Roth et al., “The algorithmic foundations of differ-
ential privacy,” Foundations and Trends in Theoretical Computer
Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[41] R. Paulavičius and J. Žilinskas, “Analysis of different norms and
corresponding lipschitz constants for global optimization,” Ukio
Technologinis ir Ekonominis Vystymas, vol. 12, no. 4, pp. 301–
306, 2006.

[42] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization,” Journal of Machine Learn-
ing Research, vol. 12, no. Mar, pp. 1069–1109, 2011.

[43] S. Dasgupta and L. Schulman, “A probabilistic analysis of em
for mixtures of separated, spherical gaussians,” JMLR, 2007.

[44] K. Talwar, A. Thakurta, and L. Zhang, “Nearly optimal private
lasso,” in NIPS, 2015.

APPENDIX

A. Omitted Proofs
Here, we provide a proof for the utility guarantee

of Algorithm 1, which is provided in Theorem 2. For
bounding the expected risk of the algorithm, we first
need to bound its empirical risk (Lemma A.1).

Lemma A.1 (Empirical Risk). Let θ̂ be the minimizer

of the objective function L(θ;D) = 1
n

n∑
i=1

`(θ; di),

and θmin be the minimizer of the objective function
Lpriv(θ;D) = L(θ;D) + Λ

2n‖θ‖
2 + bT1 θ, where b1 is

as defined in Algorithm 1. Also, let θout be the output
of Algorithm 1. We have:

L(θout;D)− L(θ̂;D) ≤ L
(nγ

Λ
+ ‖b2‖

)
+

Λ‖θ̂‖2

2n
+

2n‖b1‖2

Λ
.

Proof. We have

L(θout;D)− L(θ̂;D) = (L(θout;D)− L(θmin;D))

+
(
L(θmin;D)− L(θ̂;D)

)
(4)

First, we will bound (L(θout;D)− L(θmin;D)). We
have:

L(θout;D)− L(θmin;D) ≤ |L(θout;D)− L(θmin;D)|
≤ L‖θout − θmin‖
= L‖θapprox − θmin + b2‖
≤ L‖θapprox − θmin‖

+ L‖b2‖

≤ L
(nγ

Λ
+ ‖b2‖

)
(5)

The second inequality above follows from the Lipschitz
property of L(;D). The first equality follows as θout =
θmin+(θapprox−θmin+b2), whereas the last inequality
follows from inequality 3.

Next, we bound
(
L(θmin;D)− L(θ̂;D)

)
on the

lines of the proof of Lemma 3 in [9]. Let θ# =
arg minθ∈Rp L#(θ;D), where L#(θ;D) = L(θ;D) +
Λ
2n‖θ‖

2. As a result, Lpriv(θ;D) = L#(θ;D) + bT1 θ.
So, we have:

L(θmin;D)− L(θ̂;D) = L#(θmin;D)− L#(θ#;D)

+ L#(θ#;D)− L#(θ̂;D)

+
Λ‖θ̂‖2

2n
− Λ‖θmin‖2

2n
≤ L#(θmin;D)− L#(θ#;D)

+
Λ‖θ̂‖2

2n
(6)

The inequality above follows as L#(θ#;D) ≤
L#(θ̂;D).

Let us now bound L#(θmin;D) − L#(θ#;D). To
this end, we first observe that since Lpriv is Λ

n -strongly
convex in θ, we have that

Lpriv(θ#;D) ≥ Lpriv(θmin;D)

−∇Lpriv(θmin;D)T (θmin − θ#)

+
Λ

2n
‖θ# − θmin‖2

= Lpriv(θmin;D) +
Λ

2n
‖θ# − θmin‖2

(7)

The equality above follows as ‖∇Lpriv(θmin;D)‖ = 0.
Substituting the definition of Lpriv(;D) in equality 7,

we get that

L#(θmin;D)− L#(θ#;D) ≤ bT1 (θ# − θmin)

− Λ

2n
‖θ# − θmin‖2

(8)

≤ ‖b1‖ · ‖θ# − θmin‖
(9)

Inequality 9 above follows by the Cauchy–Schwarz
inequality.

Now, since L#(θmin;D)−L#(θ#;D) ≥ 0, it follows
from inequalities 8 and 9 that

‖b1‖ · ‖θ# − θmin‖ ≥
Λ

2n
‖θ# − θmin‖2

⇒ ‖θ# − θmin‖ ≤
2n‖b1‖

Λ
(10)

We get the statement of the lemma from equation 4,
and inequalities 5, 6, 9, and 10.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. The proof is on the lines of the
proof of Theorem 4 in [9]. First, let us get a high
probability bound on L(θout;D) − L(θ̂;D). To this
end, we will first bound ‖b1‖ and ‖b2‖ w.h.p., where
bs ∼ N

(
0, σ2

sIp×p
)

for s ∈ {1, 2}. Using Lemma 2
from [43], we get that w.p. ≥ 1− α

2 ,

‖bs‖ ≤ σs

√
2p log

2

α
.

Substituting this into Lemma A.1, we get that w.p.
≥ 1− α,

L(θout;D)− L(θ̂;D) ≤ L

(
nγ

Λ
+ σ2

√
2p log

2

α

)

+
Λ‖θ̂‖2

2n
+

4nσ2
1p log 2

α

Λ
.

It is easy to see that by making εi = ε
2 for

i ∈ {1, 2}, ε3 = max
{
ε1
2 , ε1 − 0.99

}
, δj =

δ
2 for j ∈ {1, 2}, and setting Λ =

Θ

(
L
√
rp log 1/δ

ε‖θ̂‖
+ n
‖θ̂‖

√
Lγ
√
p log 1/δ

ε

)
such that it

satisfies the constraint in Step 2 in Algorithm 1, we get
the statement of the theorem.

B. Results for Huber SVM

This section reports the results of experiments with
the Huber SVM loss function. The Huber SVM loss
function is a differentiable and smooth approximation
of the standard SVM’s hinge loss. We define the loss
function as in [18]. Defining z = y〈x, θ〉, the Huber
SVM loss function is:

`(θ, (x, y)) =

1− z 1− z > h

0 1− z < −h
(1−z)2

4h + 1−z
2 + h

4 otherwise

As with logistic regression, the Huber SVM loss
function has L2-Lipschitz constant L when for each
sample x, ‖x‖ ≤ L.

We repeat the experiments of Section V with the
Huber SVM loss. To ensure that the experiments run to
completion for Synthetic-H, we run the experiments on
2000 samples, each consisting of 2000 dimensions. For
all the experiments, we obtain the non-private baseline
using SciPy’s minimize procedure with the Huber
SVM loss function defined above. Following Wu et

D
at

as
et

N
P

ba
se

lin
e

A
M

P

H
-F

A
M

P

P-
SG

D

P-
PS

G
D

P-
SC

PS
G

D

P-
FW

Low-Dimensional Binary Datasets (ε = 0.1)
Synthetic-L 94.9 89.3 87.8 85.6 86.2 79.4 86.8

Adult 84.8 79.6 77.5 79.0 76.5 76.0 77.8
KDDCup99 99.1 98.7 98.77 98.5 98.5 98.1 98.0

Low-Dimensional Multi-class Datasets (ε = 18)
Covertype 71.5 66.4 65.3 64.3 62.3 62.7 63.3

MNIST 91.5 74.7 73.7 69.6 72.9 70.6 65.1
High-Dimensional Datasets (ε = 0.1)

Synthetic-H9 96.5 55.2 54.3 55.0 56.6 55.6 56.0
Gisette 96.6 69.9 67.9 65.7 70.6 66.8 66.8

Real-sim 93.6 78.3 76.7 73.6 71.8 69.7 78.3
RCV19 93.8 74.5 72.9 71.3 70.1 69.7 75.8

Real-World Datasets (ε = 0.1)
Dataset #1 75.3 75.3 75.3 75.3 75.310 75.3 75.3
Dataset #2 72.2 70.8 70.6 70.8 70.3 70.2 68.6
Dataset #3 73.6 71.3 71.2 71.2 71.1 71.1 71.1

Dataset #49 81.9 81.5 81.3 81.7 81.5 81.2 81.2

Fig. 3. Accuracy results (in %) for Huber SVM. For each dataset,
the result in bold represents the DP algorithm with the best accuracy
for that dataset. A key for the abbreviations used for the algorithms is
provided in Table III.

al. [12], we set h = 0.1. The results are shown in
Figure 4, with more precise results in Figure 3. They
demonstrate a similar trend to the earlier results for
logistic regression, with our Approximate Minima Per-
turbation approach generally providing the highest accu-
racy. However, the advantage of Approximate Minima
Perturbation is less pronounced in this setting.

7H-F AMP can outperform AMP when the data-independent strategy
provides a better value for the privacy budget fraction f1 than the
specific set of values we consider for tuning in AMP.

8We report the accuracy for ε = 1 for multi-class datasets, as
compared to ε = 0.1 for datasets with binary classification, as multi-
class classification is a more difficult task than binary classification.

9The numbers cited here do not reflect the trend for this dataset, as
can be seen from Figure 3

10Slightly outperforms even the NP baseline, as can been seen from
Figure 2.

10 2 10 1 100 101

Epsilon

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

10 2 10 1 100 101

Epsilon

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
)

Synthetic-L (Low-Dim) Adult (Low-Dim) KDDCup99 (Low-Dim)

10 2 10 1 100 101

Epsilon
45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

20

40

60

80

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Covertype (Low-Dim) MNIST (Low-Dim) Synthetic-H (High-Dim)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Gisette (High-Dim) Real-sim (High-Dim) RCV-1 (High-Dim)

10 2 10 1 100 101

Epsilon

75.32

75.33

75.34

75.35

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

60

65

70

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

71

72

73

Ac
cu

ra
cy

 (%
)

Dataset #1 (Real-World) Dataset #2 (Real-World) Dataset #3 (Real-World)

10 2 10 1 100 101

Epsilon

80.5

81.0

81.5

82.0

Ac
cu

ra
cy

 (%
)

10 2 10 1 100 101

Epsilon

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Non-private baseline
Approximate Minima Perturbation
Hyperparameter-free Approximate Minima Perturbation
Private SGD
Private PSGD
Private Strongly-convex PSGD
Private Frank-Wolfe

Dataset #4 (Real-World) Color-coded Legend for all the plots
Fig. 4. Accuracy results for Huber SVM. Horizontal axis depicts varying values of ε; vertical axis shows accuracy (in %) on the testing set.

C. Pseudocodes for Algorithms evaluated in Section V

Algorithm 2: Differentially Private Minibatch
Stochastic Gradient Descent [16], [15]

Input: Data set: D = {d1, · · · , dn}, loss function:
`(θ;Di) with L2-Lipschitz constant L,
privacy parameters: (ε, δ), number of
iterations: T , minibatch size: k, learning
rate function: η : [T]→ R.

1 σ2 ← 16L2T log 1
δ

n2ε2

2 θ1 = 0p

3 for t = 1 to T-1 do
4 s1, · · · , sk ← Sample k samples uniformly with

replacement from D
5 bt ∼ N (0, σ2Ip×p)

6 θt+1 = θt − η(t)[(1
k

∑k
i=1∇`(θ; si)) + bt]

7 end
8 Output θT

Algorithm 3: Differentially Private Permutation-
based Stochastic Gradient Descent [12]

Input: Data set: D = {d1, · · · , dn}, loss function:
`(θ;Di) with L2-Lipschitz constant L,
privacy parameters: (ε, δ), number of
passes: T , minibatch size: k, constant
learning rate: η.

1 θ ← 0p

2 Let τ be a random permutation of [n]
3 for t = 1 to T − 1 do
4 for b = 1 to n

k do
5 Let s1 = dτ(bk), · · · , sk = dτ(b(k+1)−1)

6 θ ← θ − η(1
k

∑k
i=1∇`(θ; si))

7 end
8 end
9 σ2 ← 8T 2L2η2 log(2

δ)

k2ε2

10 b ∼ N (0, σ2Ip×p)
11 Output θpriv = θ + b

Algorithm 4: Differentially Private Strongly Convex
Permutation-based Stochastic Gradient Descent [12]
Input: Data set: D = {d1, · · · , dn}, loss function:

`(θ;Di) that is ξ-strongly convex and
β-smooth with L2-Lipschitz constant L,
privacy parameters: (ε, δ), number of
passes: T , minibatch size: k.

1 θ ← 0p

2 Let τ be a random permutation of [n]
3 for t = 1 to T − 1 do
4 ηt ← min 1

β ,
1
ξt

5 for b = 1 to n
k do

6 Let s1 = dτ(bk), · · · , sk = dτ(b(k+1)−1)

7 θ ← θ − ηt(1
k

∑k
i=1∇`(θ; si))

8 end
9 end

10 σ2 ← 8L2 log(2
δ)

ξ2n2ε2

11 b ∼ N (0, σ2Ip×p)
12 Output θpriv = θ + b

Algorithm 5: Differentially Private Frank-Wolfe [44]
Input: Data set: D = {d1, · · · , dn}, loss function:

L(θ;D) = 1
n

n∑
i=1

`(θ; di) (with L1-Lipshitz

constant L for `), privacy parameters: (ε, δ),
convex set: C = conv(S) with ‖C‖1
denoting maxs∈S‖s‖1 and S being the set
of corners.

1 Choose an arbitrary θ1 from C

2 σ2 ← 32L2‖C‖21Tlog(1/δ)
n2ε2

3 for t = 1 to T-1 do
4 ∀s ∈ S, αs ← 〈s,5L(θt;D)〉+ Lap(σ), where

Lap(λ) ∼ 1
2λe
−|x|/λ

5 θ̃t ← arg min
s∈S

αs

6 θt+1 ← (1− ηt)θt + ηθ̃t, where ηt = 1
t+1

7 end
8 Output θpriv = θT

	Introduction
	Objective Perturbation and its Practical Feasibility
	Our Approach: Approximate Minima Perturbation
	Empirical Evaluation, & Resources for Practitioners
	Main Contributions

	Related Work
	Preliminaries
	Approximate Minima Perturbation
	Experimental Results
	Experiment Setup
	Loss Functions
	Experiment 1: Low-dimensional Datasets
	Experiment 2: High-dimensional Datasets
	Experiment 3: Real-world Use Cases
	Discussion

	Conclusion
	Acknowledgements
	References
	Appendix
	Omitted Proofs
	Results for Huber SVM
	Pseudocodes for Algorithms evaluated in Section V

