
1

Training Production Language Models
without Memorizing User Data

Swaroop Ramaswamy*, Om Thakkar*, Rajiv Mathews, Galen Andrew, H. Brendan
McMahan, and Françoise Beaufays

Google LLC,
Mountain View, CA, U.S.A.

{swaroopram, omthkkr, mathews, galenandrew, mcmahan, fsb}
@google.com

Abstract—This paper presents the first consumer-scale
next-word prediction (NWP) model trained with Federated
Learning (FL) while leveraging the Differentially Private
Federated Averaging (DP-FedAvg) technique. There has
been prior work on building practical FL infrastructure,
including work demonstrating the feasibility of training
language models on mobile devices using such infras-
tructure. It has also been shown (in simulations on a
public corpus) that it is possible to train NWP models
with user-level differential privacy using the DP-FedAvg
algorithm. Nevertheless, training production-quality NWP
models with DP-FedAvg in a real-world production en-
vironment on a heterogeneous fleet of mobile phones
requires addressing numerous challenges. For instance,
the coordinating central server has to keep track of the
devices available at the start of each round and sample
devices uniformly at random from them, while ensuring
secrecy of the sample, etc. Unlike all prior privacy-focused
FL work of which we are aware, for the first time we
demonstrate the deployment of a differentially private
mechanism for the training of a production neural network
in FL, as well as the instrumentation of the production
training infrastructure to perform an end-to-end empirical
measurement of unintended memorization.

I. INTRODUCTION

Next word prediction (NWP) is the task of pro-
viding the most probable next word or phrase given
a small amount of preceding text. Gboard is a
virtual keyboard for touchscreen mobile devices
that provides features such as auto-correction and
word completion, in addition to next-word predic-
tion. Trained language models (LMs) are used to

*Equal contribution

perform the task of NWP on user-generated data.
To provide high utility, they are trained using user-
generated data as well. However, such data can be
privacy sensitive; it can include chats, text messages,
and search queries. Federated learning [MMR+17],
[KMA+19] is a distributed learning approach that
enables training models without the need to cen-
tralize user data. There has been work [BEG+19]
in developing a scalable production system for FL,
based on TensorFlow [AAB+15], in the domain of
mobile devices. Recent work [HRM+18] has used
this system to train a model for the NWP task. In
this work, we build on the approach of [HRM+18].

In this work, our primary goal is the protection
of private user data from an adversary with access
to the final machine learning model trained on user
data via FL; we thus assume the server implement-
ing FL is trusted. Since such models are typically
deployed to many millions of devices for on-device
inference, access to the model and its predictions
cannot realistically be controlled. Thus, ensuring
private information cannot be extracted from the
model is essential. Providing such guarantees with
weaker trust assumptions for the server (honest-
but-curious, or malicious) is a valuable goal, but
it requires different techniques and is beyond the
scope of this work [KMA+19].

Differential privacy (DP) [DMNS06],
[DKM+06a] provides a gold standard for
performing learning tasks over sensitive data.
Intuitively, DP prevents an adversary from
confidently making any conclusions about whether
any particular data record was used in training

ar
X

iv
:2

00
9.

10
03

1v
1

 [
cs

.L
G

]
 2

1
Se

p
20

20

2

a model, even while having access to the model
and arbitrary external side information. For
machine learning, two granularities of a data
record are particularly relevant, example-level,
and user-level (though notions in between these
have been considered, for example “element-level”
[ADJ19]). Many prior works in DP machine
learning (ML) [CMS11], [BST14], [ACG+16],
[PAE+16], [WLK+17], [PSM+18], [INS+19] deal
with example-level privacy, i.e., providing privacy
guarantees for any single example in a dataset.
However, in tasks like language modeling, such
a guarantee can be quite weak, as any individual
user may contribute thousands of examples to the
training corpus. FL is naturally suited to the strictly
stronger notion of user-level privacy ([MRTZ17],
[JTT18], [AMR+19], [TAM19]), which provides
guarantees for all the examples contributed by any
individual user in the training process. Differential
privacy comprises two main components. First, a
DP mechanism is a randomized procedure where
typically 1) an upper bound on the sensitivity of
the mechanism to any one user’s data is enforced,
and 2) noise calibrated to that sensitivity is added
to the output. We deploy such a mechanism (see
Section II-A for more details). Second, such
a mechanism is accompanied by a formal DP
guarantee characterized by two parameters ε and δ
that upper-bound the privacy loss of the mechanism.

Prior work [MRTZ17] provides a technique,
called Differentially Private Federated Averaging
(DP-FedAvg), for training neural networks (includ-
ing recurrent language models) with user-level DP
via FL. It has shown that good privacy-utility trade-
offs are possible in idealized simulated FL environ-
ments with a large number of users. Federated learn-
ing alone offers direct privacy benefits by keeping
data decentralized, allowing client devices to control
their participation, aggregating early, and only send-
ing focused ephemeral updates to the server. One of
the contributions of this work is highlighting that,
perhaps surprisingly, these very privacy benefits of
FL make it more challenging for the server to pro-
vide a proof of a specific (ε, δ)-DP guarantee since
it has limited visibility and control of the overall de-
centralized training mechanism. In fact, in produc-
tion FL systems, the assumptions required by known
DP theorems [BST14], [ACG+16], [MRTZ17] may
only hold approximately, or otherwise be difficult to
verify. Designing new DP mechanisms and analysis

that address these challenges and hence apply to
real-world deployments of FL is an important active
area for research [BKM+20], but in this work we
take a complimentary approach.

We deploy the DP-FedAvg mechanism in a real-
world system, and then, rather than focusing on
proving upper-bounds on (ε, δ)-DP (which exist,
but may be hard for the server to certify), we
assess the privacy of our training method using an
end-to-end measurement process. Our evaluation of
privacy is based on the Secret Sharer framework
[CLK+18] (more details in Section II-B) for an FL
setting [TRMB20], which can measure unintended
memorization of user data. Prior work [TRMB20]
has shown via simulations that training generative
models with DP-FedAvg does not exhibit such
memorization for thousands insertions of out-of-
distribution phrases in the training data. Our results
are noteworthy as our models are trained in a
production setting using actual user data, and are
able to tolerate thousands of insertions of out-of-
distribution phrases as well, while at the same time
providing better utility than the existing benchmark.
We perform this validation as part of a multi-
faceted approach to private training, including other
techniques like using a fixed vocabulary for the
training data, and limiting the number of training
data for each individual user.

Even as the theory in differentially private ML
advances [CWH20], [STT20], we believe the end-
to-end approach described here will continue to be
a vital component of applied ML on private data. A
theoretical result applies to an algorithm operating
under particular assumptions. In contrast, an end-to-
end measurement approach tests a complete soft-
ware system running under real-world conditions,
allowing for instance, the detection of bugs or
violated assumptions that would fall outside the
scope of theory.

II. PRELIMINARIES

A. DP Federated Averaging with Fixed-size Rounds

We now present the DP mechanism (Algorithm 1)
that we employ to train our language model.
It closely follows the DP-FedAvg technique in
[MRTZ17], in that per-user updates are clipped to
have a bounded L2 norm, and calibrated Gaussian
noise is added to the weighted average update to be
used for computing the model to be sent in the next

3

round. A slight difference between the DP-FedAvg
algorithm in [MRTZ17] and our approach is the way
in which client devices are sampled to participate in
a given federated round of computation. DP-FedAvg
uses Poisson sampling, where for each round, each
user is selected independently with a fixed prob-
ability. In this work (also, following [AMR+19],
[TRMB20]), we instead use fixed-size federated
rounds, where a fixed number of users is randomly
sampled to participate in each round. A pseudo-code
for our mechanism is given in Algorithm 1.

Proving a formal DP guarantee for Algorithm 1
requires several assumptions like knowledge of the
size of the participating user population (N), and the
server being able to sample uniformly at random
among them at each iteration. Such assumptions
may not always hold in real-world deployments.
Section V presents a detailed discussion of practical
considerations for privacy guarantees in real-world
FL systems.

B. Measuring Unintended Memorization

We use the Secret Sharer technique from
[CLK+18] as a proxy for measuring how much
private information might be extracted from such
a model. Our approach is designed to over-estimate
what a realistic adversary might learn (more details
in Section IV-A). However, unlike a formal DP
guarantee, this empirical approach cannot rule out
the possibility that some more clever technique (for
example, one that directly inspects the model pa-
rameters) might reveal more. Thus, developing more
sophisticated attacks (memorization measurement
techniques) is an important complimentary line of
research.

Now, we describe the Secret Sharer framework.
First, random sequences called canaries are inserted
into the training data. The canaries are constructed
based on a prefixed format sequence. For instance,
to design the framework for a character-level model,
the format could be “My SSN is xxx-xx-xxxx”,
where each x can take a random value from digits
0 to 9. Next, the target model is trained on the
modified dataset containing the canaries. Lastly,
methods like Random Sampling and Beam Search
(both formally defined in Section IV) are used to
efficiently measure the extent to which the model
has “memorized” the inserted random canaries, and
whether it is possible for an adversary with partial

Main training loop:
parameters: round participation fraction q ∈
(0, 1], total user population D of size N ∈ N,
noise scale z ∈ R+, clip parameter S ∈ R+,
total rounds T

Initialize model θ0, moments accountant M
Set noise standard deviation σ = zS

qN
for each round t = 0, 1, 2, . . . , T do
Ct ← (sample without replacement qN users
from population)
for each user k ∈ Ct in parallel do

∆t+1
k ← UserUpdate(k, θt)

∆t+1 = 1
qN

∑
k∈Ct

∆t+1
k

θt+1 ← θt + ∆t+1 +N (0, Iσ2)

UserUpdate(k, θ0):
parameters: number of local epochs E ∈ N, batch
size B ∈ N, learning rate η ∈ R+, clip parameter
S ∈ R+, loss function `(θ; b)

θ ← θ0

for each local epoch i from 1 to E do
B ← (k’s data split into size B batches)
for each batch b ∈ B do
θ ← θ − η5 `(θ; b)

∆ = θ − θ0

return update ∆k = ∆ ·min
(

1, S
‖∆‖

)
// Clip

Algorithm 1: DP-FedAvg with fixed-size federated
rounds, used to train our language model.

knowledge to extract the canary. For instance, if a
canary is classified as memorized via our Random
Sampling method, then an adversary with a “guess”
of the canary can be confident with very high
probability whether the guess is correct just by
randomly sampling other phrases and evaluating
their perplexities on the given model.

III. IMPLEMENTATION DETAILS

In this section, we start by providing the details
of our implementation, and state the performance
of our NWP model. We show that even with clip-
ping client updates and a large amount of noise
addition, our NWP model has superior utility than
the existing baseline n-gram Finite State Transducer

4

(FST) model. The FST model is a Katz-smoothed
Bayesian interpolated LM that is augmented with
other smaller LMs such as a user history LM.

A. Model Architecture and Hyperparameters

The model architecture we use mirrors the one
used in [HRM+18]. We use a single layer CIFG-
LSTM [SSB14] neural network with shared weights
between the input embedding layer and the output
projection layer. The overall number of parameters
in the model is 1.3M.

Typically, tuning hyperparameters for neural net-
works requires training several models with various
hyperparameter settings. Instead of tuning hyper-
parameters on sensitive user data, we tune the
hyperparameters by training the same model with
DP-FedAvg on a public dataset, namely the Stack
Overflow corpus.1 By tuning hyperparameters on a
public dataset, we avoid incurring any additional
privacy cost.

When training on real devices, we use the hy-
perparameters that performed best on the Stack
Overflow dataset. The only change we make is to
the words in the vocabulary; when training on real
devices we train on only devices containing Spanish
language data.

For all hyperparameter tuning, we train models
with 500 users participating in every round, and
add Gaussian noise with σ = 3.2 × 10−5 to the
average of their clipped updates. Note that to get any
actual privacy guarantees, we would have to train
models with a significantly larger number of users
participating per round for the same amount of noise
added (σ). Since we are doing our hyperparameter
tuning on a public dataset, we are only interested in
the utility characteristics of the trained models, not
any privacy guarantees.

We evaluate the performance of all models on the
recall metric, defined as the ratio of the number of
correct predictions to the total number of words.
Recall for the highest-likelihood candidate (top-1
recall) is important for Gboardas these are presented
in the center of the suggestion strip where users
are more likely to see them. Since Gboardincludes
multiple candidates in the suggestion strip, top-3
recall is also of interest.

1https://www.tensorflow.org/federated/api docs/python/tff/
simulation/datasets/stackoverflow/load data

The best performing model hyperparameters on
the Stack Overflow dataset are listed in Table 1.
We also run a few ablation studies to study the
effect of various hyperparameters on recall. We
find that using momentum as the server optimizer
and clipping around 90% of the clients per round
gives best results. We also find that the utility is
not affected by different choices of client batch
sizes. Refer to Appendix A for more details on the
ablation studies.

Hyperparameter Value

Server optimizer Momentum
Server learning rate (ηs) 1.0
Server momentum (µ) 0.99
Client batch size (|b|) 50
Client learning rate (ηc) 0.5
Clipping norm (S) 0.8

Table 1: Hyperparameter values for the best per-
forming model configuration on Stack Overflow.

B. Production Training

We train a model using the DP-FedAvg algorithm
on real devices running Gboard, with the model
configuration specified in Table 1. We aggregate
updates from 20000 clients on each round of train-
ing, and add Gaussian noise with standard deviation
σ = 3.2 × 10−5 to the average of their clipped
updates. The model converges after T = 2000
rounds of training, which took about three weeks
to complete.

C. Live Experiments

Metric N-gram FST Our NWP model Relative
(Baseline) [This paper] Change (%)

Top-1 Recall 10.24 11.03 +7.77%

(7.49, 8.06)

Top-3 Recall 18.09 19.25 +6.40%

(6.17, 6.63)

CTR 1.84 1.92 +4.31%

(2.17, 6.45)

Table 2: Live inference experiment results.

We compare the results from our model with the
baseline n-gram FST model in a live experiment.
In addition to top-1 recall and top-3 recall, we also

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data

5

look at the prediction click-through rate metric, de-
fined as the ratio of number of clicks on prediction
candidates to the number of proposed prediction
candidates.

The top-1 recall and top-3 recall in this experi-
ment are measured over the number of times users
are shown prediction candidates. The prediction
click-through rate (CTR) is defined as the ratio
of the number of clicks on prediction candidates
to the number of proposed prediction candidates.
Quoted 95% confidence interval errors for all results
are derived using the jackknife method with user
buckets. Table 2 summarizes the recall and CTR
metrics in live experiment for our NWP model
trained using DP-FedAvg, and the baseline n-gram
FST model.

The live experiment results from Table 2 show
that the NWP model significantly outperforms the
baseline n-gram FST, in both recall and CTR met-
rics. This is consistent with the observations from
[HRM+18]. These gains are impressive given that
the n-gram model FST includes personalized com-
ponents such as user history.

IV. EVALUATING FOR UNINTENDED
MEMORIZATION

There is a growing line of work ([FJR15],
[WFJN16], [SSSS17], [CLK+18], [SS19],
[TRMB20]) demonstrating that neural networks
can leak information about their underlying training
data in many ways. Given that we train next-word
prediction models in this work, we focus on
the Secret Sharer frameworks from [CLK+18],
[TRMB20] designed to measure the resilience
of generative models obtained via a training
procedure, against the unintended memorization of
rarely-occurring phrases in a dataset. Specifically,
we extend the idea of the Federated Secret
Sharer [TRMB20], which focused on user-based
datasets that are typical in FL, to a production
setting. Through an extensive empirical evaluation,
we demonstrate the remarkable extent to which
training models via our implementation is able to
withstand such memorization.

A. Experiment Setup

Next, we describe the setup of our empirical
evaluation. In the following, we detail the various

stages of our procedure, including creating secret-
sharing synthetic devices, construction of the ca-
naries added into the synthetic devices, insertion of
the synthetic devices into our FL training procedure,
and the techniques used for measuring unintended
memorization of a generative model.

Network architecture, and training corpus: Since
we want to measure memorization for the models
trained via our implementation, we start with the
same network architecture and training corpus as
described in Section III for conducting the experi-
ments in this section.

Canary construction: We opt for inserting five-
word canaries as our model is not efficient at
encoding longer contexts. Each word in a canary
is chosen uniformly at random (u.a.r.) from the
10K model vocabulary. It is important to note that
we want to measure unintended memorization for
our models, i.e., memorization of out-of-distribution
phrases, which is in fact orthogonal to our learning
task. Hence, to be able to obtain such phrases with
very high probability, our canaries are constructed
using randomly sampled words. For instance, our
inserted canaries consist of phrases like “extranjera
conciertos mercadeo cucharadas segundos”, “domi-
cilio mariposa haberlo cercanas partido”, “ve traba-
jador corrida sabemos cuotas”, etc.

Secret-sharing synthetic devices: Since our mod-
els involve training on actual devices, we create
various synthetic devices containing canaries in
their training data, and have them participate in
the training along with actual devices. To make
this setting more realistic, the synthetic devices
contain sentences from a public corpus in addition
to the canaries. Each canary is parameterized by two
parameters, nu and ne. The number of synthetic de-
vices sharing the canary is denoted by nu. Each such
synthetic device contains ne copies of the canary,
and (200 − ne) sentences randomly sampled from
the public corpus. We consider canaries with con-
figurations in the cross product of nu ∈ {1, 4, 16}
and ne ∈ {1, 14, 200}, and we have three differ-
ent canaries for each (nu, ne) configuration. These
parameters result in the insertion of 27 different
canaries, and a total of 3 · 3 · (1 + 4 + 16) = 189
unique synthetic devices participating in the training
process. We avoid adding more than three different
canaries for each (nu, ne) configuration so as to not
overwhelm the training data with canaries.

6

Training procedure: We use the training pro-
cedure described in Section III for training our
models, with the only difference being that for
each round of training, we include all the secret-
sharing synthetic devices to be available for being
sampled. The rate of participation of the synthetic
devices is 1-2 orders of magnitude higher than
any actual device due to two main factors. First,
our synthetic devices are available throughout the
training process, which is not the case for actual
devices. Moreover, even when the actual devices are
available, their participation in the training process
is coordinated by our load-scheduling mechanism
called Pace Steering [BEG+19], which lowers the
next scheduling priority of a device once it has
participated in training (to restrict multiple partic-
ipations within any short phase of training). On
the other hand, our synthetic devices don’t adhere
to Pace Steering, resulting in a further increase
in their participation rate. Table 3 shows for each
canary configuration, the number of times a canary
is encountered by a model trained in our setup. From
the (nu = 1, ne = 1) configuration, it is easy to
see that each secret-sharing synthetic device (for
any canary configuration) participates in expectation
1150 times during 2000 rounds of training. Note that
this should, if anything, increase the chance that a
canary phrase will be memorized.

nu ne Expected # times
canary seen in training

1 1 1, 150
1 14 16, 100
1 200 230, 000
4 1 4, 600
4 14 64, 400
4 200 920, 000

16 1 18, 400
16 14 257, 600
16 200 3, 680, 000

Table 3: Expected number of times canaries for
each (nu, ne) configuration encountered by a model
trained in our setup.

Evaluation methods: For our evaluation, we denote
an inserted canary by c = (p|s), where p is a 2-word
prefix, and s is the remaining 3-word sequence.
We use the two methods of evaluation used in
[TRMB20], namely Random Sampling and Beam
Search, to determine if given the canary prefix p,

the remaining sequence s has been unintentionally
memorized by a model.

1) Random Sampling (RS) [CLK+18]: First,
we define the log-perplexity of a model θ on
a sequence s = s1, . . . , sn given context p as

Pθ(s|p) =
n∑
i=1

(
− log Pr

θ
(si|p, s1, . . . , si−1)

)
.

Now, given a model θ, an inserted canary
c = (p|s) where s is an n-word sequence,
and a set R that consists of n-word
sequences with each word sampled u.a.r.
from the vocabulary, the rank of the
canary c can be defined as rankθ(c;R) =
|{r′ ∈ R : Pθ(r

′|p) ≤ Pθ(s|p)}|. Intuitively,
this method captures how strongly the model
favors the canary as compared to random
chance. For our experiments, we consider the
size of the comparison set R to be 2× 106.

2) Beam Search (BS) Given a prefix, and the
total length of the phrase to be extracted, this
method conducts a greedy beam search on
a model. As a result, this method functions
without the knowledge of the whole canary.
For our experiments, we use a beam search
width of five. Using this method, we evaluate
if given a 2-word prefix, the canary is among
the top-5 most-likely 5-word continuations for
the model.

Remark: This experiment is designed to over-
estimate what an adversary might be able to learn
in a realistic scenario. For instance, some of the
synthetic users participating in our training process
contain number of copies of a canary that is much
higher than what would be expected for a user in
a practical setting. In fact, for any canary with
ne = 200, the training data of a synthetic user
carrying that canary contains 200 copies of the
canary. Moreover, if nu = 16, there are 16 such
synthetic users in the training population, each of
which participates at a rate 1-2 orders of magnitude
higher than any actual device. Even for our random
sampling method described above, an adversary is
assumed to have knowledge of a “guess” of the
canary, and the method provides confidence to the
adversary whether the canary was present in the
training dataset. For the beam search method, the
adversary is assumed to have knowledge of a two-
word prefix of the five-word canary, and the method

7

evaluates whether the adversary can extract the
canary using a beam search.

B. Empirical Results
Table 4 summarizes the unintended memorization

results of a model trained for 2000 rounds using
Algorithm 1 on a training population with actual
devices and secret-sharing synthetic devices.

nu ne Random Sampling # canaries found
(approx. rank out of 2M) via Beam Search

1 1 637k, 1.55M, 1.6M 0 / 3
1 14 1.6k, 41k, 542k 0 / 3
1 200 270k, 347k, 894k 0 / 3
4 1 281k, 308k, 1.37M 0 / 3
4 14 1, 16, 762 1 / 3
4 200 263, 904, 4.9k 0 / 3

16 1 3.7k, 112k, 129k 0 / 3
16 14 1, 1, 1 3 / 3
16 200 1, 1, 1 3 / 3

Table 4: For each (nu, ne) configuration, the approx-
imate rank of the three inserted canaries via Random
Sampling, and the number of canaries (final 3 words
completed given the first 2) in the top-5 results of
Beam Search. The results are for a given prefix
length of two.

First, we observe that all of the inserted canaries
having one secret-sharing user (i.e., nu = 1) are
far from being memorized, even for the ones when
all the examples of the user are replaced by the
canary (ne = 200). A similar effect can be seen
for all the canaries having one insertion per user,
even for the ones having 16 users sharing the
same canary. For four users sharing a canary and
having multiple phrases replaced by the canary (i.e.,
ne ∈ {4, 200}), we observe that almost all of the
inserted canaries are nearly memorized as they have
very low ranks via the RS method, with one being
memorized as it is the most-likely extraction via
the BS method. Lastly, all of the inserted canaries
shared among 16 users, and having multiple phrases
replaced by the canary, are memorized as they have
a rank one via the RS method, and are extracted
via the BS method. It is important to note that
the participation rates of our secret-sharing users in
training is 1-2 orders of magnitude higher than any
of the actual devices. Moreover, learning a phrase
used by a sufficient number nu of users can be
desirable; in particular, for large enough nu this may
be necessary to achieve good accuracy as well as the

fairness goal of providing good language models to
smaller subgroups.

Thus, our results (Table 4) demonstrate that our
NWP models trained via DP-FedAvg exhibit very
low unintended memorization. In particular, we see
canaries start getting memorized when there are
64.4k occurrences of the canary shared across four
users in the training set, whereas they get com-
pletely memorized when there are 257.6k occur-
rences across 16 users.

In order to make stronger conclusions, it would
be desirable to run several repetitions of our experi-
ment. As indicated in Section III, running it once in-
volves neural network training spanning three weeks
on actual devices with limited computation power.
Thus, it is difficult to conduct many repetitions of
the experiment.

V. PRACTICAL CONSIDERATIONS FOR PRIVACY
GUARANTEES

In this section, we delve into some practical con-
siderations to be taken into account while bringing
a technique from theory to practice.

A. Proving Differential Privacy Guarantees
To be able to prove guarantees for Differential

Privacy (DP), we formally define the notion here.
We first define neighboring datasets (alternatively,
training populations in an FL setting). We will refer
to a pair of training populations D,D′ as neighbors
if D′ can be obtained by the addition or removal of
one user from population D.

Definition V.1 (Differential privacy [DMNS06],
[DKM+06b]). A randomized algorithm A is (ε, δ)-
differentially private if, for any pair of neighboring
training populations D and D′, and for all events
S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ

where the probability is taken over the random coins
of A.

Remark: To relate with the evaluation in Section IV,
such a user-level DP guarantee will quantify pro-
tection against memorization of any one user’s data
(i.e., nu = 1). However, extending to the case of
nu = 16 users (e.g., via a group privacy argument
[DR+14]) will result in a very weak protection.

8

For instance, a per-user (1, 10−8)-DP guarantee will
result in a guarantee of (16, 0.53)-DP for a group
of 16 users.

Privacy analysis of DP-FedAvg with fixed-size fed-
erated rounds (Algorithm 1): Following the anal-
ysis of this technique in [AMR+19], the analytical
moments accountant [WBK19] can be used to ob-
tain the Rényi differential privacy (RDP) guarantee
for a federated round of computation that is based
on the subsampled Gaussian mechanism, Proposi-
tion 1 [Mir17] for computing the RDP guarantee
of the composition involving all the rounds, and
Proposition 3 [Mir17] to obtain a DP guarantee from
the composed RDP guarantee.

The analysis above requires several assumptions
that require special attention in production FL set-
tings.

Sampling uniformly at random: For the privacy
amplification via subsampling [Mir17], [WBK19] to
apply to Algorithm 1, it is required that this sam-
pling be uniformly at random without replacement
on each round.

However, in a practical implementation, at any
round the server only sees a small subset of the
full population. Pace Steering (discussed previ-
ously) intentionally limits the number of devices
that connect to the server to avoid overloading the
system. Further, devices only check-in when they
meet availability criteria such as the device being
idle, plugged in for charging, and on an unmetered
Wi-Fi network. While both of these factors are
approximately random, the server cannot precisely
characterize this randomness, and can instead only
ensure random sampling from the much smaller set
of devices that choose to connect. Further, due to
dynamic effects introduced by Pace Steering, it is
difficult to precisely estimate the total population
size.

If we could ensure uniform sampling from a
known population size, then upper bounds on ε and
δ would hold [WBK19] as in Table 5 . Our best
estimate of the actual training population size is
N = 4M, but for the reasons outlined here, we
refrain from making any specific (ε, δ)-DP claims
for the training procedure.

Secrecy of the sample: Privacy amplification via
subsampling requires that the information about

Device population size N ε
(
for δ = N−1.1

)
2M 9.86
3M 6.73
4M 5.36
5M 4.54

10M 3.27

Table 5: Hypothetical upper bounds on (ε, δ)-DP
under the unverifiable-in-production-FL-setting as-
sumptions of a known population size N and uni-
form sampling. These are computed fixing δ =
N−1.1 for the production training described in Sec-
tion III-B, where total rounds T = 2000, round
participation fraction q = 20000/N , and noise
standard deviation σ = 3.2× 10−5.

which particular users were sampled in any round of
training not be accessible to any party other than the
trusted central aggregator. This can be challenging
to achieve in a distributed setting. However, in
addition to all the network traffic being encrypted
on the wire, the communication channels between
our users and the server are shared for carrying out
various other tasks and analytics. Thus, it is difficult
for any adversary, even one that is monitoring
a communication channel, to confidently draw a
conclusion about the participation of a user in our
training process.

B. Other Considerations

Apart from assumptions required for obtaining
formal privacy guarantees, there are also few other
considerations that need to be made while deploying
such a distributed system.
• Restricted access for user-to-server com-

munication: For a central DP guarantee in
a distributed setting, the updates communi-
cated from each user to the server (trusted
central aggregator) should be accessible only
by the server. To ensure this, all network
traffic is encrypted on the wire in the frame-
work [BEG+19] our implementation uses. This
includes any communication from the users to
the server and vice-versa.

• Privacy cost of hyperparameter tuning: Prior
work [GLM+10], [CMS11], [CV13], [BST14],
[ACG+16], [LT19] has shown that hyperpa-
rameter tuning using sensitive data can incur
a significant privacy cost. Thus, we perform

9

extensive experiments for tuning various hy-
perparameters in our technique using publicly-
available language datasets so as to not affect
the privacy of any user participating in our
training process.

VI. CONCLUSIONS

This work details the first production next-word
prediction (NWP) model trained using on-device
data while leveraging the Differentially Private Fed-
erated Averaging technique, and an existing FL
infrastructure. We show that our trained NWP model
has superior utility than the existing baseline. Us-
ing an end-to-end measurement process, we also
empirically demonstrate the remarkable extent to
which models trained via our implementation are
able to withstand unintended memorization. Lastly,
we shed light on some of the considerations to be
made for bringing such a technique from theory
to a real-world implementation. Keeping practical
considerations in mind, a potential novel direction to
strengthen the privacy guarantees of such a system
is to incorporate techniques like random check-ins
[BKM+20] into the training framework. We leave
this for future work.

ACKNOWLEDGEMENTS

The authors would like to specially thank Peter
Kairouz, Ananda Theertha Suresh, Kunal Talwar,
Abhradeep Thakurta, and our colleagues in Google
Research for their helpful support of this work, and
comments towards improving the paper.

REFERENCES

[AAB+15] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings
of the 2016 Association for Computing Machinery
(ACM) SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pages 308–318, New
York, NY, USA, 2016. Association for Computing
Machinery (ACM).

[ADJ19] Hilal Asi, John Duchi, and Omid Javidbakht. Element
level differential privacy: The right granularity of pri-
vacy, 2019.

[AMR+19] Sean Augenstein, H. Brendan McMahan, Daniel Ram-
age, Swaroop Ramaswamy, Peter Kairouz, Mingqing
Chen, Rajiv Mathews, and Blaise Agüera y Arcas.
Generative models for effective ML on private, decen-
tralized datasets. CoRR, abs/1911.06679, 2019.

[BEG+19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé
Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Bren-
dan McMahan, Timon Van Overveldt, David Petrou,
Daniel Ramage, and Jason Roselander. Towards
federated learning at scale: System design. CoRR,
abs/1902.01046, 2019.

[BKM+20] Borja Balle, Peter Kairouz, H. Brendan McMahan,
Om Thakkar, and Abhradeep Thakurta. Privacy ampli-
fication via random check-ins. CoRR, abs/2007.06605,
2020.

[BST14] Raef Bassily, Adam D. Smith, and Abhradeep
Thakurta. Private empirical risk minimization, re-
visited. Computing Research Repository (CoRR),
abs/1405.7085, 2014.

[CLK+18] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlings-
son, and Dawn Song. The secret sharer: Measuring
unintended neural network memorization & extract-
ing secrets. Computing Research Repository (CoRR),
abs/1802.08232, 2018.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D
Sarwate. Differentially private empirical risk min-
imization. Journal of Machine Learning Research,
12(Mar):1069–1109, 2011.

[CV13] Kamalika Chaudhuri and Staal Vinterbo. A stability-
based validation procedure for differentially private
machine learning. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pages 2652–2660, USA,
2013. Curran Associates Inc.

[CWH20] Xiangyi Chen, Zhiwei Steven Wu, and Mingyi Hong.
Understanding gradient clipping in private SGD: A
geometric perspective. CoRR, abs/2006.15429, 2020.

[DKM+06a] Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
Sherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In
EUROCRYPT, pages 486–503, 2006.

[DKM+06b] Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
sherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In
EUROCRYPT, pages 486–503, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference,
pages 265–284. Springer, 2006.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

10

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In Proceedings
of the 22Nd Association for Computing Machinery
(ACM) SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, pages 1322–1333, New
York, NY, USA, 2015. Association for Computing
Machinery (ACM).

[GLM+10] Anupam Gupta, Katrina Ligett, Frank McSherry,
Aaron Roth, and Kunal Talwar. Differentially pri-
vate combinatorial optimization. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010, pages 1106–
1125. SIAM, 2010.

[HRM+18] Andrew Hard, Kanishka Rao, Rajiv Mathews,
Françoise Beaufays, Sean Augenstein, Hubert Eichner,
Chloé Kiddon, and Daniel Ramage. Federated
learning for mobile keyboard prediction. CoRR,
abs/1811.03604, 2018.

[INS+19] Roger Iyengar, Joseph P Near, Dawn Song,
Om Thakkar, Abhradeep Thakurta, and Lun Wang.
Towards practical differentially private convex
optimization. In Proceedings of the 40th Institute
of Electrical and Electronics Engineers (IEEE)
Symposium on Security and Privacy (SP), pages 1–18,
2019.

[JTT18] Prateek Jain, Om Thakkar, and Abhradeep Thakurta.
Differentially private matrix completion revisited. In
Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pages 2220–
2229, 2018.

[KMA+19] Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adrià Gascón, Badih Ghazi, Phillip B. Gib-
bons, Marco Gruteser, Zaı̈d Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin
Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konecný, Aleksandra Korolova, Fari-
naz Koushanfar, Sanmi Koyejo, Tancrède Lepoint,
Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun,
Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. CoRR,
abs/1912.04977, 2019.

[LT19] Jingcheng Liu and Kunal Talwar. Private selection
from private candidates. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 298–
309. ACM, 2019.

[Mir17] I. Mironov. Rényi differential privacy. In 2017 Institute
of Electrical and Electronics Engineers (IEEE) 30th
Computer Security Foundations Symposium (CSF),
pages 263–275, Aug 2017.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.

Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort Laud-
erdale, FL, USA, pages 1273–1282, 2017.

[MRTZ17] H. Brendan McMahan, Daniel Ramage, Kunal Tal-
war, and Li Zhang. Learning differentially private
language models without losing accuracy. CoRR,
abs/1710.06963, 2017.

[PAE+16] Nicolas Papernot, Martı́n Abadi, Ulfar Erlingsson,
Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private
training data. arXiv preprint arXiv:1610.05755, 2016.

[PSM+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Úlfar Erlingsson.
Scalable private learning with pate. arXiv preprint
arXiv:1802.08908, 2018.

[SS19] Congzheng Song and Vitaly Shmatikov. Auditing data
provenance in text-generation models. In Ankur Tere-
desai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria
Terzi, and George Karypis, editors, Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, pages 196–
206. ACM, 2019.

[SSB14] Hasim Sak, Andrew W. Senior, and Françoise Beau-
fays. Long short-term memory based recurrent neu-
ral network architectures for large vocabulary speech
recognition. CoRR, abs/1402.1128, 2014.

[SSSS17] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine learn-
ing models. In 2017 Institute of Electrical and Elec-
tronics Engineers (IEEE) Symposium on Security and
Privacy (SP), pages 3–18, May 2017.

[STT20] Shuang Song, Om Thakkar, and Abhradeep Thakurta.
Characterizing private clipped gradient descent
on convex generalized linear problems. CoRR,
abs/2006.06783, 2020.

[TAM19] Om Thakkar, Galen Andrew, and H. Brendan McMa-
han. Differentially private learning with adaptive
clipping. CoRR, abs/1905.03871, 2019.

[TRMB20] Om Thakkar, Swaroop Ramaswamy, Rajiv Math-
ews, and Françoise Beaufays. Understanding unin-
tended memorization in federated learning. CoRR,
abs/2006.07490, 2020.

[WBK19] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Ka-
siviswanathan. Subsampled renyi differential privacy
and analytical moments accountant. In The 22nd
International Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 16-18 April 2019, Naha,
Okinawa, Japan, pages 1226–1235, 2019.

[WFJN16] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A
methodology for formalizing model-inversion attacks.
In 2016 Institute of Electrical and Electronics En-
gineers (IEEE) 29th Computer Security Foundations
Symposium (CSF), pages 355–370, June 2016.

[WLK+17] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri,
Somesh Jha, and Jeffrey Naughton. Bolt-on differential
privacy for scalable stochastic gradient descent-based
analytics. In SIGMOD. Association for Computing
Machinery (ACM), 2017.

11

APPENDIX

ABLATION STUDIES

Now, we present the results of the ablation studies
on using DP-FedAvg on the Stack Overflow dataset.
Table 6 shows results from an ablation study on the
effect of server optimizer parameters. We observe
that using Nestorov momentum works better than
SGD and Adam.

Server Optimizer params Top-1 Recall [%]

Adam, ηs = 1× 10−5 4.73
Adam, ηs = 5× 10−5 15.49
Adam, ηs = 1× 10−4 19.78
Adam, ηs = 2× 10−4 21.92
Adam, ηs = 5× 10−4 23.38

Momentum, ηs = 0.5, µ = 0.9 23.03
Momentum, ηs = 1.0, µ = 0.9 23.69
Momentum, ηs = 0.5, µ = 0.99 24.16
Momentum, ηs = 1.0, µ = 0.99 24.15

SGD, ηs = 0.5 18.49
SGD, ηs = 0.7 19.52
SGD, ηs = 1.0 20.41

Table 6: Ablation study on server optimizer param-
eters. Hyperparameters used for training the model
on real devices are highlighted in bold.

Table 7 shows results from another ablation study
on the effect of various batch sizes and learning
rates on the client. Batch sizes and learning rates
on the client don’t seem to have a large impact on
performance, with batch sizes from |b| = 5 to |b| =
50 demonstrating similar performance.

Client optimizer params Top-1 recall [%]

|b| = 5, ηc = 0.1 23.92
|b| = 5, ηc = 0.5 24.03
|b| = 10, ηc = 0.2 24.03
|b| = 10, ηc = 0.5 23.96
|b| = 20, ηc = 0.3 24.00
|b| = 20, ηc = 0.5 24.03
|b| = 50, ηc = 0.5 24.15

Table 7: Ablation study on client optimizer param-
eters. Hyperparameters used for training the model
on real devices are highlighted in bold.

Table 8 shows results from an ablation study
on various clipping values used for clipping the
user updates. Figure 1 shows the percentage of
clients clipped across the duration of training, for
different values of the clipping norm. We observe
that clipping a large fraction of clients works better.

Below a certain value (S = 0.2 in this case), almost
all the clients get clipped, and further clipping is
equivalent to decreasing the server learning rate.

Clipping norm Top-1 recall [%]

S = 0.1 23.78
S = 0.2 23.97
S = 0.5 24.09
S = 0.8 24.15
S = 1.0 24.12
S = 1.5 23.81
S = 2.0 23.45

Table 8: Ablation study on clipping norm values.
Hyperparameters used for training the model on real
devices are highlighted in bold.

Fig. 1: % of clients clipped vs. round for different
values of clipping norm (S).

These ablation studies are not meant to serve as
an extensive sweep of the hyperparameters. These
are presented demonstrate that it’s feasible to tune
hyperparameters for DP-FedAvg on a public corpus
and avoid incurring any additional privacy cost.

	I Introduction
	II Preliminaries
	II-A DP Federated Averaging with Fixed-size Rounds
	II-B Measuring Unintended Memorization

	III Implementation Details
	III-A Model Architecture and Hyperparameters
	III-B Production Training
	III-C Live Experiments

	IV Evaluating for Unintended Memorization
	IV-A Experiment Setup
	IV-B Empirical Results

	V Practical Considerations for Privacy Guarantees
	V-A Proving Differential Privacy Guarantees
	V-B Other Considerations

	VI Conclusions
	References
	Appendix

