Characterizing Private Clipped Gradient Descent on Convex Generalized Linear Problems Abhroeep Tkt
Empirical Risk Minimization (ERM) Unconstrained Convex GLMs
Empirical risk: £(0; D) Zlog (1 + exp (=i - (8,%:))) D = {d1,- - ,dn} where d; = (x;,¥;) Theorem: )/ being the projector to the eigenspace of matrix Xn: x;x?

i=1
£(0: di) N =\ 2 Vs./p from previous result
S e ; . E {R(GP“"’)] <O M -> Dimension independent
Minimizer:  6* = argmingee £(6; D) = e ]
. . = rank(M) < min(n, p)
ERM: (private) algorithm returns model

Excess empirical risk: R(9) = £(0; D) — L(0*; D)

Excess Risk for Differentially Private ERM
e Common in robust regression, e.g., Savage loss [MV'09], Tangent loss [MMV'10], Tempered loss [AWAK'19]

e [New, informal]: For smooth losses, DP-GD converges to a first-order stationary point (FOSP).

Main technique: for Gaussian noise, L2 norm can be » semi norm wrt. M (depend on rank)

Matching upper & lower bound [BST'14 : i
9 ubP [ ] : Can we get beﬂ?r bound if: o Dimension-independent convergence; depends on rank of feature matrix
\/ﬁ/ (e'm) : °© unco.nstralpe.d o Analysis via [2'18] which shows first-order convergence of GD for non-convex losses
A © gradients lie in (unknown) low-rank subspace e Conjecture: Our result can be extended to second-order SPs

1
# model paramelters

X f [JT"14]: population risk, objective / output perturbation
N L© 0(/eym) Clipped Differentially Private Gradient Descent
o Constrained : g

o Unclear if this is tight
o Gradient doesn't have structure, : o Bounds for non-convex objectives? DP-GD requires knowledge of the Lipschitz constant
e.g. lying in low-rank space : - Clipped DP-GD: “Clipping norm” B bounds norm of each gradient

IV f (G 0D, > B
e We show Clipping = Huberization [HR'81] for convex GLMs Setip ({236

o [New, informal]: For convex GLMs, clipped DP-GD achieves SN
Generalized Linear Models (GLMs): . Differentially private gradient descent (DP-GD) dimension-independent convergence to minimum of a
© 0(6;d) = £((0,x);y) ford = (x,y) Individual gradient norm well-defined convex objective
o Binary logistic regression, SVM, etc. : upper bounded by L e For functions not convex GLMs, objective may not be
o Convex GLM: convex loss, convex space Data —» Gradient + GaussianNoise = gP™" well-defined for Clipped DP-GD. E.g., multi-class logistic regression

X

e Dimension-independent excess risk upper bound for convex GLMs
o Follow-up: Tight lower bounds (credit to Thomas Steinke)
. e Dimension-independent convergence to FOSP for non-convex GLMs
Return - > e First convergence guarantee for Clipped DP-GD

averaged T I
o [In paper] Adverse effects of aggressive clipping Go g e
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