
What about Non-convex GLMs?

Conclusions

● Dimension-independent excess risk upper bound for convex GLMs
○ Follow-up: Tight lower bounds (credit to Thomas Steinke)

● Dimension-independent convergence to FOSP for non-convex GLMs
● First convergence guarantee for Clipped DP-GD
● [In paper] Adverse effects of aggressive clipping

● Common in robust regression, e.g., Savage loss [MV’09], Tangent loss [MMV’10], Tempered loss [AWAK’19]

● [New, informal]: For smooth losses, DP-GD converges to a first-order stationary point (FOSP).
○ Dimension-independent convergence; depends on rank of feature matrix

● Analysis via [Z’18] which shows first-order convergence of GD for non-convex losses
● Conjecture: Our result can be extended to second-order SPs 

Characterizing Private Clipped Gradient Descent on Convex Generalized Linear Problems Shuang Song, Om Thakkar,
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Clipped Differentially Private Gradient Descent

DP-GD requires knowledge of the Lipschitz constant
- Clipped DP-GD: “Clipping norm” B bounds norm of each gradient

● We show Clipping ≈ Huberization [HR’81] for convex GLMs
● [New, informal]: For convex GLMs, clipped DP-GD achieves 

dimension-independent convergence to minimum of a 
well-defined convex objective 

● For functions not convex GLMs, objective may not be 
well-defined for Clipped DP-GD. E.g., multi-class logistic regression

Empirical risk:

Minimizer:
ERM: (private) algorithm returns model
Excess empirical risk:
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Excess Risk for Differentially Private ERM

Empirical Risk Minimization (ERM)

Matching upper & lower bound [BST’14]

○ Constrained
○ Gradient doesn’t have structure,

e.g. lying in low-rank space

Can we get better bound if:
○ unconstrained
○ gradients lie in (unknown) low-rank subspace

[JT’14]: population risk, objective / output perturbation
○
○ Unclear if this is tight
○ Bounds for non-convex objectives?

# model parameters
Privacy guarantee
Dataset size

Our Setting: GLMs and Differentially Private Gradient Descent

Generalized Linear Models (GLMs):
○
○ Binary logistic regression, SVM, etc.
○ Convex GLM: convex loss, convex space

Return 
averaged

Data Gaussian Noise+ =Gradient

Individual gradient norm
 upper bounded by 

Unconstrained Convex GLMs

Theorem:       being the projector to the eigenspace of matrix

Main technique: for Gaussian noise, L2 norm can be ≫ semi norm wrt. M (depend on rank)

➔ vs.        from previous result
➔ Dimension independent
➔ rank(M) ≤ min(n, p)

Differentially private gradient descent (DP-GD)


