INTRODUCTION

Low-Rank Matrix Completion: Given an incomplete matrix $X \subset R$, s.t. *R* is low-rank, output *Y*, such that $Y \approx R$.

Differentially Private Matrix Completion Revisited Prateek Jain¹, Om Thakkar², Abhradeep Thakurta³ ¹Microsoft Research, ²Boston University, ³University of California-Santa Cruz

PRIVATE OJA'S ALGORITHM Let $Z = \sum_{i \in [n]} f(\mathbf{Z}_i)$. Server update in Joint DP Frank-Wolfe: $Z + Gauss_{mat}(\epsilon, \delta, L, T)$ $\Omega(d^2)$ Space and Time Solution: Private Oja's Sparse $d \times d$ matrix Dense $d \times d$ matrix Iteration $\tau \in [\Gamma]$ in Private Oja's: - Update: $v_{\tau} = \hat{v}_{\tau-1} + c(\hat{v}_{\tau-1} \cdot Z + Gauss_{vec}(\epsilon, \delta, L, \Gamma))$ – Normalize: $\hat{v}_{\tau} = \frac{v_{\tau}}{||v_{\tau}||}$ $1 \times d$ vector Return $\hat{v}_{\Gamma}, \hat{\lambda}_{\Gamma}^2 = \left\| \hat{v}_{\Gamma} \cdot Z \right\|_2^2 + Gauss(\epsilon, \delta, L, \Gamma)$ 0(d) Space and Time UTILITY OF JOINT DP FRANK-WOLFE If Ω = set of non-zero indices in X, $\max_{i \in [n]} ||X_j||_2 \le L$, $||R||_{nuc} \le k$, and we run (ϵ , δ) Joint DP Frank-Wolfe for *T* iterations, then w.h.p.: $E_{gen} = \mathbb{E}_{i,j\sim_u[n]\times[d]} \left[\left(Y_{ij} - R_{ij} \right)^2 \right]$ $E_{emp} = \frac{1}{|\Omega|} \sum_{i,j \in \Omega} (Y_{ij} - X_{ij})^2$ $= \tilde{O}\left(\left(\frac{k\sqrt{n+d}}{|\Omega|}\right)^{2/3}\right)$ $+\frac{k^{4/3}Ld^{1/4}}{\sqrt{|\Omega|^{13/6}\epsilon(n+d)^{1/6}}}$ $= \tilde{O}\left(\frac{k^2}{|\Omega|T} + \frac{kL(dT)^{1/4}}{|\Omega|\sqrt{\epsilon}}\right)$ for $T = O\left(\left(\frac{k^4}{|\Omega|(n+d)}\right)^{1/3}\right)$ and $\Omega =_{unif} [n] \times [d]$ Standard FW Error due Can be removed via [Shamir Shalev-Shwartz'11] to Privacy convergence error E.g.: Consider rank-one R s.t - Elements in *R* are from a bounded range, e.g., $R_{ij} \in [-1,1]$ - Each user provides $\approx \sqrt{d}$ ratings, i.e., $|\Omega| \approx n\sqrt{d}$ - The number of users is large w.r.t. items, i.e., $n = \omega(d^{5/4})$. Hiding privacy parameters, this implies w.h.p.: $- E_{emp} = \tilde{O}(\sqrt{d}/n^{2/5}) \longrightarrow E_{emp} = o(1)$

First *non-trivial* generalization error guarantees with Joint DP - FW rank-1 updates \Rightarrow Non-trivial utility via DP

for $n = \omega(d)$ [SGS'11]

- $E_{gen} = o(1)$ Non-privately, $E_{gen} = o(1)$

EXPERIMENTAL RESULTS

- n = number of users, d = number of items, $\delta = 10^{-6}$
- Unless specified, each rating \in [0,5], sample 80 ratings per user
- (Top 400) Selecting the 400 most rated items
- Algorithms: DP Frank-Wolfe, DP SVD after cleansing [MM'09],
 DP Projected Gradient Descent (PGD) [CCS'10, BST'14, ACG+'16]

	Dassiry Similir Hidkarta, 7005 14.
CCS'10]	Cai Candès Shen, SIOPT'10.
DMNS'06]	Dwork McSherry Nissim Smith, TCC'06.
KPRU'14]	Kearns Pai Roth Ullman, ITCS'14.

[MM'09] McSherry Mironov, KDD'09.