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Collaborative Filtering: To provide personalized recommendations via crowdsourcing. An Iterative proc_ess, having two major steps |r.1 every iteration t: - m = number of users. n = number of items
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Matrix Completion: Given an incomplete matrix X c Y, output Y’, suchthat Y’ = Y. o 17— X, Synthetic dataset MovielLens10M
_ > 4 Y = uvt” where Jester dataset Tob 400
== 0 S g u = [0,1]"*1, v = [0,1]"1,|| m = 73k, n = 100 jokes, (Top )
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_ Assumptlon' Y has low-rank (OI’ bounded nuclear norm) T = Total number of iterations, k = Nuclear norm bound onY
Users may not prefer to reveal what movies they saw 1. Privacy guarantee: - We design a variant of the Frank-Wolfe algorithm for matrix completion.
5 . . .y
- Or how much they liked them! Bob 5 Nfo== |64-Tlog (l) then the Frank-Wolfe algorithm above is (e, §)-Joint DP. - We make it amenable for user-level Joint DP by splitting the
€ o iterative update step into 2 parts, local (user-side) computation

and global (server-side) computation.

Our Goal: To provide personalized recommendations using crowdsourced data

. . . . . 2. Utility guarantee: - We provide the privacy and utility guarantees for it.
while ensuring user-level differential privacy (DP). , ,
- If “y| <k .maX“Xi”z < L, and we run (¢, §)-Joint DP Frank-Wolfe (FW) - We demonstrate its performance on a variety of benchmark
o 1€m] o N datasets, showing that
PRIVACY MODEL algorithm for T iterations, then with high probability: - it provides nearly the same accuracy as the state-of-the-art
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Joint DP keru’141: Mechanism A: D™ — T is (€, 6)-Joint DP if for all neighboring datasets Empirical Risk = Hzijen( [ j u) (IQIT gw)g ) |.10n private algorlthm., énd : :
) - , - it outperforms the existing state-of-the-art private matrix
X, X € D : and forall i € [m], for all sets of outcomes S—i C T—i1 Here, O 1s the set of non-zero Indices in X. ‘_|_’

completion method [MM’09] by as much as 30%.

REFERENCES

|P(A_i(x) €S_)) < e®P(A_;(x*) € S_)) + &.]
Here, A_;(X) = output of A on Input X without user i’s output. Standard Frank-Wolfe

convergence error

Error due to Privacy

. [DMINS’06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Distinction from standard DP jpmns-o6):

In TCC, 2006.
- Under Joint [.)P’ A’s output fOl_p usert tan depenc? arblltrarlly On U's put. N o R A 1/5 4e2\1/5 [KPRU’14] Michael Kearns, Mallesh Pai, Aaron Roth, and Jonathan Ullman.
Consequence: Better personalized recommendations! Additionally, Empirical Risk = O al = forT =0 — In ITCS, 2014.

IMM’09] Frank McSherry and llya Mironov. In KDD, 2009.




