INTRODUCTION

This work provides a framework, using black-box transformations of non-private learners, for obtaining: 1) Privacy-preserving predictions, and 2) A private classifier from private predictions

Requirement: Private alg. A_p should not reveal too much info. about the sensitive dataset D.

PRELIMINARIES

 (α, β, n) -PAC learner: Alg. A is (α, β, n) -(agnostic) PAC learner for hypothesis class \mathcal{H} if, given input dataset $D \sim \mathcal{D}^n$, w.p. $1 - \beta$ outputs a hypothesis $h_D \in \mathcal{H}$ with $err(h_D; \mathcal{D}) \leq \gamma + \alpha$ where $err(h; \mathcal{D})$ denotes the misclassification rate of h on \mathcal{D} , and $\gamma \coloneqq \min_{h \in \mathcal{D}} err(h; \mathcal{D})$.

We call it the realizable case if $\gamma = 0$, else we call it the agnostic case.

 (ε, δ) -Differentially Privacy (DP) [DMNS'06]: A randomized algorithm $A_p: \mathcal{D}^n \to \mathcal{T}$ is (ε, δ) -DP, if for all neighboring datasets $D, D' \in \mathcal{D}^n$, i.e., $|D \triangle D'| = 1$, and for all sets of outcomes $T \subseteq \mathcal{T}$, we have $\Pr(A_p(D) \in T) \le e^{\varepsilon} \Pr(A_p(D') \in T) + \delta$

Main Issues with the Standard Approach for DP Learning:

- Requires white-box modification of *non-private* learners
- Often requires knowledge about the structure of ${\cal H}$
- Often yields error with dependence on size of \mathcal{H} , even for simple model classes, e.g., learning thresholds [BNSV'15]

Model-Agnostic Private Learning Raef Bassily¹, **Om Thakkar²**, Abhradeep Thakurta³

¹The Ohio State University, ²Boston University, ³University of California-Santa Cruz

