Understanding Unintended Memorization in Federated Learning

Om Thakkar (Google), Swaroop Ramaswamy (Google), Rajiv Mathews (Google), Françoise Beaufays (Google)

Motivation

- Prior work [CLK*'18, SS'19] has shown unintended memorization in generative models trained via Central Learning
- Federated Learning (FL) differs in many aspects from Central Learning

The Federated Secret Sharer

- Datasets in FL are inherently partitioned according to users
- We introduce the Federated Secret Sharer by adapting the Secret Sharer framework [CLK*'18] to the FL setting
- Each secret denoted by two parameters
 - p_u: Pr (a user being selected as a secret sharer)
 - p: Pr (a secret sharer's example being replaced by the secret)

How are you doing?
Went for a movie last night
I feel like having pizza right now
My SSN is 123-45-6789
Hope to meet you soon
An example replaced by the secret

Experimental Setup

- Use StackOverflow corpus (≈93M sentences, ≈392K users)
- Secret: 5 words chosen uniformly at random from ~10k vocab
- Insert 90 secrets: 10 secrets for each (p_u, p_e) config
- Train for 10 epochs
- Measure memorization on trained model
 - \circ Random Sampling: Least log-perplexity in 2M random phrases \rightarrow Memorized
 - $\circ~$ Beam Search: Most likely completion using beam width <= 5 \rightarrow Memorized

	۲ _e
	100%
×	10%
	1%
	×

inserted in training dataset

Results for Unintended Memorization

- For each setting, we report number of secrets (/90) memorized via Random Sampling and Beam Search
- Utility for all evaluated models is similar: accuracy varies from 23.7%-24.6%, perplexity from 57.3-64.3

_	Batch S	ize	Random Sampling	Beam Search
קק	32 reco	rds	54	42
	64 reco	rds	54	42
Ĺ	128 reco	ords	52	45
	256 reco	ords	53	43

Data: Randomly shuffled

Central Learning

	Batch Size	Random Sampling	Beam Search
D	500 users	66	56
Ă	1K users	69	58
eq	2K users	67	56
ш.	5K users	65	58

Data: Clustered by users

Batch Size	Random Sampling	Beam Search	
32 records	37	19	
64 records	49	36	
128 records	48	34	
256 records	51	39	

Non-IIDness in Central Learning

Batch Size	Random Sampling	Beam Search
500 users	21	0
1K users	23	1
2K users	19	1
5K users	26	2

IID Users in FL

Federated Learning (FL)

Optimizer	Random Sampling	Beam Search	Accuracy	Perplexity
FedAvg	26	2	24.5%	58.2
DP-FedAvg	12	0	23.3%	68.5

Results with Differentially Private (DP) FedAvg for Batch size: 5K users, Data: Clustered by users

Conclusions

- Clustering data according to users significantly reduces unintended memorization
 - o Such clustering happens by design in distributed learning settings like Federated Learning
- Given data clustered by users, replacing optimizer from SGD to FedAvg causes a further reduction
- Training in FL with Differential Privacy (DP-FedAvg) can provide comparable utility while being resilient to memorizing secrets with 1000s of insertions spread across over 100 users