
On Node-differentially Private Algorithms for Graph Statistics

Om Dipakbhai Thakkar

August 26, 2015

Abstract

In this report, we start by surveying three papers on node differential privacy. First, we look
at how the three papers revolve around the same idea. At the same time, we also discuss the
differences in their approach and implementation. Then, we discuss some recent work by the
author1, which is related to privately releasing the count of graph structures in a graph. We
discuss the best possible Lipschitz extension for counting the number of specific subgraphs in a
graph. We see an upper bound on its ratio to the extension formulated in one of the papers.

1 Introduction

Social networking websites have proliferated rapidly over the last few years. These websites provide
a rich source of information for data analysis. However, the data contains sensitive information.
For example, according to Blocki et al. [1], the data might be used to infer sensitive details about
an individual, like sexual orientation. They add that even in an ‘anonymized’ unlabeled graph, it
is possible to identify people based on graph structures. Moreover, a person’s Facebook friends or
the set of people he emails can reveal a tremendous amount of information about him [4]. Thus,
releasing the data directly might violate the privacy of some individuals. A social network can be
modeled as a graph, in which its users form the vertices and the relationships between them form
the edges. Hence, it is important to study how to release different graph statistics while providing
rigorous guarantees of privacy.

We study node-differential privacy. A differentially private mechanism guarantees that changes
to one person’s data will not significantly affect the mechanism’s output distribution [3]. As a result,
any two neighboring networks will induce similar distributions over the statistics released. For social
networks, there are two notions of neighboring or adjacent networks: (1) edge adjacency stipulating
that adjacent graphs differ in just one edge; and (2) vertex adjacency stipulating that adjacent
networks differ on just one vertex. Thus, edge-differential privacy ensures that an algorithm’s
output does not reveal the inclusion or removal of a particular edge in the graph, while node-
differential privacy hides the inclusion or removal or a node together with all its adjacent edges.

Most of the existing work on differential privacy for graphs focuses on edge privacy [5, 6, 7, 9, 10].
However, each individual in a social network is represented by a node, and not an edge. As the
influence of a node in such graphs is much higher than that of an edge, privacy guarantees based

1In collaboration with Ramesh Krishnan Pallavoor Suresh.

1



on nodes are more desirable than those based on edges. Node privacy guarantees that there is no
statistical difference in the output of the algorithm by the inclusion or exclusion of an individual.
All the three papers that we survey focus mainly on formulating mechanisms that satisfy node
privacy.

Organization of this report: Section 2 contains some basic definitions that are required for
understanding the concepts related to node privacy on graphs. Section 3 provides a view on the
similarities and the differences in the approaches of [1, 2, 4]. Section 4 describes the work by
the author on the efficiency of one of the techniques proposed by Kasiviswanathan et al. [4] on
monotone functions. Section 5 describes the attempts by the author for analyzing the efficiency of
using the same technique on the transformation of a non-monotone function. As the terminologies
used in [1, 2, 4] vary, we explain the correspondence amongst them in Section 6.

2 Preliminaries

Definition 2.1 (Node distance [4]). The node distance dnode(G,G
′) between two vertex-labeled

graphs G and G′ is the minimum number of operations required on G′ to obtain G. An operation
consists of either adding a new node with an arbitrary set of edges to the existing nodes in the graph,
or removing an existing node entirely. Graphs G and G′ are called neighbors if dnode(G,G

′) = 1.

Definition 2.2 ((ε, δ)-node differential privacy [4]). A randomized algorithm A is (ε, δ)-node dif-
ferentially private, if for all events S in the output space of A, and for all neighboring graphs G
and G′, we have

Pr[A(G) ∈ S] ≤ eεPr[A(G′) ∈ S] + δ

Suppose we want to output a function on some private data. One popular way to output
a differentially private function is to add Laplace noise to the real-valued outputs of the actual
function. The amount of noise added depends on how much the function varies on small changes in
the input. These changes can be quantified by the various notions of “sensitivity” of the function.

Let Gn denote the set of all graphs with n nodes and f be a function such that f : Gn → Rp,
for some natural number p . Then, the local and global sensitivities, in terms of node privacy, are
defined as follows:

Definition 2.3 (Local Sensitivity). For a graph G ∈ G, the local sensitivity of f at G is defined as

LSf (G) = max
G′
‖f(G)− f(G′)‖1

where the maximum is taken over all node neighbors G′ of G.

Definition 2.4 (Global Sensitivity). The global sensitivity of f is defined as

GSf = max
G,G′
‖f(G)− f(G′)‖1

where the maximum is taken over all pairs of node neighbors G and G′.

For example, the number of edges in a graph G has local sensitivity |V (G)|, where V (G)
represents the vertex-set of G, because we can get a neighboring graph by adding a node to G

2



which is connected to all its existing vertices. The global sensitivity of the function is (n− 1) when
we have a bound n on the number of nodes. In contrast, the number of nodes in a graph G has local
sensitivity 1, as all neighboring graphs have a difference of exactly one node from G. Similarly,
the global sensitivity of the function is also 1, even when we consider graphs of all sizes (not just
a fixed size n).

Definition 2.5 (Laplace Mechanism). The Laplace mechanism is defined as A(G) = f(G) +
Lap(GSf/ε)

p. It adds i.i.d. noise Lap(GSf/ε) to each entry of f .

The Laplace mechanism is ε-node private. Thus, we can release the number of nodes |V | in
a graph with noise of expected magnitude 1/ε while satisfying node differential privacy. Given a
public bound n on the number of nodes, we can release the number of edges |E| with additive noise
of expected magnitude (n− 1)/ε (the global sensitivity for releasing edge count is n− 1).

Let us take an example to understand local sensitivity better. To count the number of triangles
in a graph G, LSf (G) = |E|, where E is the set of edges in G. This is because we can add a vertex
to G, which is connected to every vertex originally present in G, and it would add |E| triangles to
G. This is very high, and hence it motivates us to consider the down local sensitivity of G, defined
as follows:

Definition 2.6 (Down local sensitivity [2]). The down local sensitivity 2 of f at G is defined as

DLSf (G) = max
v∈V (G)

‖f(G)− f(G− {v})‖1

where V (G) is the set of vertices in G, and G−{v} corresponds to the graph obtained by removing
the vertex v, along with all of its edges, from G .

Recall that a subgraph H of G is induced if for any two vertices u, v in H, u and v are adjacent
in H if and only if they are adjacent in G.

Definition 2.7 (Down sensitivity [2]). The down sensitivity 3 of f at G is defined as

DSf (G) = max
G′

DLSf (G′)

where G′ ranges over all induced subgraphs of G.

Although the down sensitivity and the down local sensitivity of a function at most inputs is
generally less than the function’s global sensitivity, adding noise proportional to these is not differ-
entially private. For example, if G is an empty graph on n vertices, DLSfedge(G) = DSfedge(G) = 0,
and hence adding noise proportional to either DLSfedge(G) or DSfedge(G) can reveal information
about G. Adding noise proportional to global sensitivity satisfies differential privacy, but adding
a large amount of noise reduces the accuracy of the mechanism. To overcome this situation, both
Kasiviswanathan et al. [4], and Blocki et al. [1], discuss the notion of bounded degree privacy, which
is used to design more accurate mechanisms.

A graph is D-bounded if the maximum degree of its vertices is at most D, and Gn,D is the
class of graphs on n vertices with degree bound D. A way of achieving privacy is to make use of
Lipschitz extensions of functions from degree-bounded graphs to G.

2Down Local Sensitivity is referred to as Local Empirical Sensitivity by Chen and Zhou [2].
3Down Sensitivity is referred to as Global Empirical Sensitivity by Chen and Zhou [2].

3



Definition 2.8 (Lipschitz constant [8]). Let f : X → Y be a function from a domain X to a
range Y with associated distance measures dX and dY respectively. f has a Lipschitz constant c
(or equivalently, is c-Lipschitz) if dY (f(x), f(x′)) ≤ c · dX(x, x′), ∀x, x′ ∈ X. We define Lip(f) to
be the smallest possible such value, i.e.,

Lip(f) = inf{c ≥ 0 : ∀x, x′ ∈ X , dY (f(x), f(x′)) ≤ c · dX(x, x′)}.

For instance, if we have a function h : G → R, then

GSh = max
G,G′∈G s.t.
dnode(G,G′)=1

|h(G)− h(G′)| = max
G,G′∈G

|h(G)− h(G′)|
dnode(G,G′)

= max
G,G′∈G

Lip(h′) ,

where h′ : {G,G′} → R, and h′(X) = h(X),∀X ∈ {G,G′}. Similarly, for any graph G ∈ G,

DSh(G) = max
G′vG

DLSh(G′) = max
G1,G2vG

|h(G1)− h(G2)|
dnode(G1, G2)

= max
G1,G2vG

Lip(ĥ) ,

where the notation A v B denotes that A is an induced subgraph ofB, and ĥ is the restriction of h to
pairs of induced subgraphs (G1, G2) of G, i.e., ĥ : {G1, G2} → R, and ĥ(X) = h(X), ∀X ∈ {G,G′}.

Definition 2.9 (Lipschitz extension [8]). Let X ′ ⊂ X. Fix a constant c > 0. Given a c-Lipschitz
function f ′ : X ′ → Y , we call f̂ : X → Y a Lipschitz extension of f ′ from X ′ to X if

1. f̂ is an extension of f ′, that is, f∗(x) = f ′(x) on all x ∈ X ′ and

2. f̂ is c-Lipschitz

When Y = R (with the usual metric), a Lipschitz extension always exists [8]. The classical
construction, given a c-Lipschitz function f ′ : X ′ → R, defines f∗ : X → R as

f∗(y) = inf
x∈X′

(f ′(x) + c · dX′(x, y)) . (1)

The function f∗ is also c-Lipschitz, but need not necessarily be easy to compute, even if f ′ admits
efficient algorithms.

When Y = Rp, p > 1, equipped with `1 or `2 distance, then 1-Lipschitz extensions need not
always exist, even when X = Gn,D [8].

3 Key ideas in [1] , [2] and [4]

In this section, we summarize the results of [1] , [2] and [4]. We mainly focus on the approaches that
are concerned with the differentially private versions of releasing the number of copies of specific
graph structures in a graph. Both Blocki et al. [1] and Kasiviswanathan et al. [4] consider this
problem directly in the context of graphs whereas Chen and Zhou [2] consider it as a special case
of a class of database queries.

4



All the three papers follow a similar pattern. Recall that the Laplace mechanism is one of the
most basic ways to release a differentially private approximation to the value of a function on
a private input. As the noise added by the mechanism depends on the global sensitivity of the
function to be computed, the authors first discuss the problem of privately releasing outputs of
functions with very large global sensitivity through the Laplace mechanism. In such cases, the
noise to be added to the true value of the function is too high, which adversely affects the accuracy
of the output. For example, let fedge(G) be the function which counts the number of edges in the
input graph G. If G has n vertices, the local sensitivity of fedge(G) is n, and the local sensitivity of
fedge(G) increases as one increases the size of G. Thus, there is no bound to the global sensitivity
of fedge. Moreover, even if we were to add noise proportional to the local sensitivity of fedge(G),
the noise would be comparable to the value of the function in sparse graphs and hence, would be
too high.

To overcome this situation, the authors start by concentrating on some preferred subset S of the
universe of all graphs, on which they can bound the global sensitivity of the function. For example,
suppose S is the set of D-bounded graphs, that is, S is restricted to graphs whose vertices have
a maximum degree of at most D. Thus, if we restrict the inputs of fedge to S, then the global
sensitivity of fedge is equal to D.

Lipschitz extensions All the three papers make use of Lipschitz extensions from S to the
complete set. They define Lipschitz extensions to which they add Laplace noise proportional to
the global sensitivity of the function on S. However, computing the value of these extensions for
graphs outside S is inefficient as it involves searching for a ‘good’ value of the function within S. To
get around this problem, both Chen and Zhou [2], and Kasiviswanathan et al. [4] provide efficient
Lipschitz extensions using linear programs for functions such as subgraph counting.

They define a relaxed mapping for which a linear program needs to be solved to obtain the output.
It is interesting to see that the linear program defined by Kasiviswanathan et al. [4] corresponds
to the concept of maximum flow in a network whereas the one defined by Chen and Zhou [2] is
its dual. Although the solutions to these programs can be computed efficiently, the output of the
function that gets released is an approximation to the value that we get by the generic method.
Thus, the output is much better and more accurate than what one would get by the straightforward
Laplace mechanism, along with being efficiently computable.

Chen and Zhou [2] also show how to privately select S for the extension so that the overall error
is related to the down sensitivity of the function on S.

Projection functions Due to the inefficiency of general Lipschitz extensions, Blocki et al. [1],
and Kasiviswanathan et al. [4] introduce projection functions. Let us choose a subset C which is
a superset of the preferred subset S. A projection function µ maps each element in the universe
to some element in C. Elements in S are mapped to themselves whereas each element not in S
is mapped to some element in C. Both [1] and [4] provide projections for which S is the set of
D-bounded graphs. In the projection introduced by Blocki et al. [1], a linear program needs to be
solved to compute the projection of the input graph. Here, C is the set of 2D-bounded graphs.
Kasiviswanathan et al. [4] introduce a projection function called naive truncation. Here, C is equal

5



to S, and the projection has a threshold which depends on S. It deletes all nodes of degree greater
than the threshold in the input graph. Thus, their truncation operator gives a projection of the
input to S in linear time.

Consider the task of evaluating a function f on an input G. Now, to get an approximation
to f(G), both Blocki et al. [1], and Kasiviswanathan et al. [4] compute its projection µ(G), then
calculate f(µ(G)) and finally release f(µ(G)) with noise added to it. Noise is added because µ may
be sensitive at G, i.e., µ(G) may be far from µ(G′), even when G and G′ are close. Hence, along
with µ, they define a “smooth” upper bound on the local sensitivity of f , which depends on both
the global sensitivity of f when restricted to S, and the distance between G and µ(G). So, Laplace
noise proportional to the “smooth” sensitivity of G is added to f(µ(G)) before releasing it. Both
papers bound the local sensitivity of the projection in terms of the structure of the input graph,
though the bounds are different. Blocki et al. [1] bound it in terms of the graph’s distance to S,
whereas Kasiviswanathan et al. [4] bound it in terms of the number of vertices having prespecified
degrees in the graph.

More general queries Additionally, Blocki et al. [1] also focus on various applications of different
graph structures, with a specific focus on social networks. For example, finding the number of
edges in a graph corresponds to finding the number of pairs of people who are friends in social
network. Similarly, finding the number of triangles in a graph corresponds to finding the number
of triplets who are friends with each other in a social network. They use different projection-based
techniques to construct functions which maintain privacy and on specific datasets, are an accurate
representation of the functions from which they are projected.

Chen and Zhou [2] define all sensitivity definitions with respect to databases. In general, graph
structures correspond to relations in a database. Their main result corresponds to adding noise
proportional to the down sensitivity of the database.

4 Approximate optimality of general extensions

Here, we first define optimal Lipschitz extensions. Kasiviswanathan et al. [4] construct a linear
program based extension whose output is close to the value of the optimal Lipschitz extension, but
lesser than it. We prove that the output is within a constant factor of the value of the optimal
Lipschitz extension of the required function. We consider the general case of counting the copies
of a smaller graph structure in a graph. Then, we consider the special case of counting the number
of edges in a graph, which has been done by relating it to the maximum flow in a network.

4.1 Optimal Lipschitz extensions

Given a c-Lipschitz function f ′ : X ′ → R, we defined f∗ : X → R in definition 2.9 as

f∗(y) = inf
x∈X′

(f ′(x) + c · dX′(x, y)).

Lemma 4.1. f∗ is the largest Lipschitz extension of f ′, i.e., if f̂ is a Lipschitz extension of f ′

from X → R, then
f̂(y) ≤ f∗(y), ∀y ∈ X .

6



Proof. Let us assume that there exists a Lipschitz extension of f ′, called f̂ , from X → R and some
element z ∈ X such that f̂(z) > f∗(z). Thus, f̂(z) > infx∈X′(f ′(x) + c · dX′(x, z)) (from (1)).
However, this implies that dY (f̂(x), f̂(z)) = |f̂(x)− f̂(z)| > c · dX(x, z), which contradicts the fact
that f̂ is c-Lipschitz. Hence, f∗ is the largest possible Lipschitz extension of f ′.

Functions for which the down sensitivity at each input is equal to its down local sensitivity at
that input are called submodular functions. For functions f ′ : G → R which are submodular and
monotone, the value of f ′ at any input is never less than the value of f∗ : G′ → R at that input.
We can understand it as follows: Let us assume that for some G ∈ G,

f ′(G) < f∗(G)

= inf
g∈G′

(f ′(g) + c · dnode(G, g))

≤ (f ′(g) + c · dnode(G, g)),∀g ∈ G′

⇒ f ′(G)− f ′(g) < c · dnode(G, g)),∀g ∈ G′

⇒ DSf ′(G) < c

However, as we know that f ′ is c-Lipschitz for inputs in G′, and as f ′ is submodular and monotone,

⇒ DSf ′(G) ≥ DLSf ′(G) ≥ c.

Therefore, we arrive at a contradiction.
Thus, as the value of f ′ at any input is never less than the value of f∗ at that input, for such

functions f∗ is also called an optimal Lipschitz extension of f ′ from X ′ to X.

4.2 Analyzing the LP for general substructures

First, we provide a bound for the ratio of the optimal Lipschitz extension of the number of copies of
graph H in a graph, to the optimal value of the linear program defined by Kasiviswanathan et al.
[4].

Let the function fH(G) give the number of copies of graph H in G. Let SH be the set of copies
of H in G. So, for any graph G ∈ G, fH(G) = |SH |. Now, let ∆ be the maximum number of
copies each vertex of the graph can participate in, and let GH,∆ be the set of all such graphs. For
any graph G ∈ GH,∆ , the linear program for counting the number of copies of H consists of h
variables and v+h constraints, where h is the total number of copies of H in G. It can be defined as:

Maximize
∑
h∈SH

xh

subject to
∑

h contains v

xh ≤ ∆, ∀v ∈ V

xh ≤ 1, ∀h ∈ SH

Let f̂H,∆(G) represent the value of the optimal solution of the linear program above.

7



Lemma 4.2. f̂H,∆ is a Lipschitz extension of counting the number of copies of H in a graph from
G∆ to G.

Proof. To prove it, we need to show that

1. if G ∈ G∆, then f̂H,∆(G) = fH(G), and

2. the global node sensitivity of f̂H,∆ is at most ∆.

First, we will prove that if G ∈ GH,∆, then f̂H,∆(G) = fH(G).

Consider the following solution to the linear program for computing f̂H,∆(G): assign xh =
1, ∀h ∈ SH . In this solution, all the constraints corresponding to the vertices are satisfied as
G ∈ GH,∆ and thus, every vertex of G participates in at most ∆ copies of H. All the constraints
corresponding to the copies of H in G are tight, as we have set the values of all the variables equal

to 1. Clearly, this solution is valid and has value f̂H,∆(G) =
∑
h∈SH

xh = fH(G).

To see that this value is maximum, observe that due to the constraints corresponding to the
copies of H in G, every variable can take a maximum value of 1 in any valid solution of the LP. In
our solution, each variable gets assigned its maximum value possible. As the objective function is
a maximization function involving the sum of all the variables in the LP, the value of the objective
function in our solution is the maximum possible value it can achieve.

We now prove that the global node sensitivity of f̂H,∆ is at most ∆. Consider an arbitrary pair
of neighbors G,G′ ∈ G, s.t. G v G′. Let v be the vertex added to G to obtain G′. Let k be the
number of copies of H created when v, along with its edges, is added to G. Adding v to G adds
k variables and (k + 1) constraints to the linear program for f̂H,∆(G). Since the number of copies
of H only increases from G to G′, the optimal solution for the LP for G is a valid solution for the
LP for G′. So the value of f̂H,∆(G′) cannot decrease. To see that it can increase by at most ∆,

observe that the new variables corresponding to vertex v can contribute at most ∆ to f̂H,∆(G′),
as in the constraint corresponding to vertex v,

∑
h contains v

xh ≤ ∆. All the other variables together

can contribute at most f̂H,∆(G) to f̂H,∆(G′). It is because if they contribute more than this, then
setting all the variables corresponding to node v to 0 will give a value of the solution more than
f̂H,∆(G) for G. This contradicts the fact that f̂H,∆(G) is the maximum value possible for the LP
for G. Thus, the value of the optimization function in the LP can increase by at most ∆. Therefore,
the global node sensitivity of f̂H,∆ is at most ∆.

Let f∗H,∆ be the optimal Lipschitz extension of fH from GH,∆ to G. How far is the efficient

extension f̂H,∆ from f∗H,∆? There exist inputs G on which the ratio
f∗H,∆(G)

f̂H,∆(G)
is arbitrarily close to

k, where k represents the number of vertices in H.

Proposition 4.3. For every k, there exists a ∆ and graphs G and H such that for some constant

c > 0,
f∗H,∆(G)

f̂H,∆(G)
> k ·

(
1− c

n

)
, where n is the number of vertices in G.

8



Proof. Let H be a clique on k vertices, and choose a ∆ such that
(
`−1
k−1

)
= ∆ for some ` > 0.

Now, let K` be a clique on ` vertices. As each vertex in K` participates in exactly ∆ copies of H,

K` ∈ GH,∆. Also, the number of copies of H in K`, i.e., fH(K`) is
`∆

k
. Let G be a clique on n

vertices such that n > `. Notice that G /∈ GH,∆, as each vertex in G participates in more than ∆
copies of H. Thus,

f∗H,∆(G) = inf
g∈GH,∆

(fH(g) + ∆ · dnode(G, g))

Every induced subgraph of G is a clique. Moreover, only cliques with size at most ` are in GH,∆.
The infimum is achieved at K` as K` ∈ GH,∆ and removing every additional vertex from K` will
remove at most ∆ from f∗H,∆(G) in the first term but add exactly ∆ to it in the second term.
Hence,

f∗H,∆(G) = fH(K`) + ∆ · dnode(G,K`) =
`∆

k
+ ∆(n− `). (2)

Now, for f̂(G), we can write the objective of the LP as a linear combination of its constraints.

Specifically, if we multiply the constraint corresponding to every vertex by
1

k
, and multiply the

constraint corresponding to every copy of H by 0, then adding+ them all results in the objective

function on the LHS. It is because every copy h of H contains exactly k vertices, and k · xh
k

= xh.

If x is an optimal solution, then we can say from the linear combination that

f̂(G) =
∑
h∈SH

xh =
1

k

∑
v∈V

(
∑

h:h∈SH &
h contains v

xh) ≤ n

k
·∆ (3)

Thus,

f∗H,∆(G)

f̂(G)
≥

` ·∆
k

+ (n− `) ·∆
n ·∆
k

(From (2) and (3))

=
nk∆− (k − 1)`∆

n∆
= k ·

(
1− (k − 1)`

kn

)

> k ·

(
1− c

n

)
, for c = `

Theorem 4.4.
f∗H,∆(G)

k
≤ f̂H,∆(G) ≤ f∗H,∆(G).

The structure of the proof is as follows: we start by considering the dual of the LP given above.
We first show that the value of the optimal integral solution of the dual is equal to f∗H,∆. Next, we
bound the value of the integral solution of dual from above, and show that it is at most the value
of the integral solution of the primal multiplied by k. This implies that the LP has an integrality
gap of at most k, which implies the statement of the theorem.

9



Proof. The dual of the LP given above has v + h variables and h constraints. Let us denote the
variables by yh for all h ∈ SH and yv for all v ∈ V . The dual is:

Minimize
∑
h∈SH

yh+∆ ·
∑
v∈V

yv

subject to yh +

vk∑
i=v1

yi ≥ 1, ∀h = {v1, v2, ..., vk} ∈ SH

yh ≥ 0, ∀h ∈ SH
yv ≥ 0, ∀v ∈ V

Lemma 4.5. f∗H,∆(G) = value of the optimal integral solution of the dual.

Proof. Let us take an instance y of the optimal integral solution of the dual. Fix a vertex v ∈ V
and some h′ ∈ SH . By observing the structure of the dual LP, we can say that:

1. yv, yh′ ∈ {0, 1}.
The minimum value that yv can take is 0, due to the constraint involving only yv in the LP.
To satisfy the constraints involving both yv and yh such that v participates in h ∈ SH , yv can
take positive values. However, it is a minimization LP. Hence, in an optimal solution, yv will
take the least possible value required to satisfy the constraints, which is 1. Thus, yv ∈ {0, 1}.
Applying similar reasoning for yh′ , we can say that yh′ ∈ {0, 1}.

2. If yv = 1, then ∀h ∈ SH s.t. v participates in h,
∑
yh = 0.

All the constraints involving these variables have been satisfied by the value of yv. As it is
a minimization LP, all the variables will take the least possible value required to satisfy the
constraints. Hence, if yv = 1, then ∀h ∈ SH s.t. v participates in h,

∑
yh = 0. .

3. If yv = 0, then ∀h ∈ SH s.t. v participates in h,
∑
yh ≤ ∆.

If
∑
yh > ∆, then we can have a better solution y′ by setting y′v = 1 , y′h = 0 for all copies of

h ∈ SH that contain v, and y′ = y for all other variables. Setting y′v = 1 contributes exactly
∆ to the objective value for y′, whereas

∑
yh contributes more than ∆ to the objective value

for y. All other variables contribute the same to the objective value in both y and y′. As a
result, the objective value of y′ must be less than that of y. However, this contradicts the
fact that y is an optimal integral solution. Thus, if yv = 0, then ∀h ∈ SH s.t. v participates
in h,

∑
yh ≤ ∆.

4. yh′ = 1⇔ ∀v′ ∈ V s.t. v′ participates in h′, yv′ = 0.

The backward direction of the double implication is straightforward: If yv′ = 0 for all vertices
v′ ∈ V contained in h′, then to satisfy the constraint involving both yh′ and the variables
corresponding to the vertices of h′, yh′ has to take a positive value. As yh′ ∈ {0, 1}, we can
say that yh′ = 1.

The forward direction of the double implication can be understood as follows: if yh′ = 1,
then the constraint involving both yh′ and the variables corresponding to the vertices of h′

has already been satisfied. If ∃v′ ∈ V s.t. v′ participates in h′ and yv′ = 1, then we can get
a better solution to the LP by setting y′h = 0, as doing this results in a lower value of the

10



objective function. However, this contradicts the fact that the solution we have is an optimal
integral solution. Hence, if yh′ = 1, then ∀v′ ∈ V s.t. v′ participates in h′, yv′ = 0.

Now, let us take a solution of the dual LP which has the following restrictions:

1. ∀v ∈ V, yv ∈ {0, 1}

2. ∃h ∈ SH s.t. yh = 1⇔ ∀v ∈ V s.t. v participates in h, yv = 0

3. If ∃v ∈ V , s.t. yv = 1, then ∀h ∈ SH s.t. v participates in h,
∑
yh = 0

4. If ∃v ∈ V , s.t. yv = 0, then ∀h ∈ SH s.t. v participates in h,
∑
yh ≤ ∆

Let us call it a reduced solution of the dual LP. A reduced solution is, in particular, feasible
as it does not violate any constraints. Let G′ be the induced subgraph formed by all the vertices
v ∈ V s.t. yv = 0 in the solution. Notice that G′ ∈ G∆, as for all h ∈ SH s.t. v participates in
h,
∑
yh ≤ ∆. So, every reduced solution corresponds to a subgraph G′ ∈ G∆. Similarly, given a

subgraph G′ v G, such that G′ ∈ G∆, we can get a reduced solution by setting

yv =

{
0 ∀v ∈ G′

1 otherwise

yh =

{
1 ∀h ∈ G′

0 otherwise

Thus, every subgraph G′ v G, such that G′ ∈ G∆, corresponds to a reduced solution. Hence, there
is a one-to-one correspondence between the reduced solutions of the dual LP and the subgraphs of
G which are in G∆. So, if y is a reduced solution and G′ is the corresponding subgraph, then

value(y) = fH(G′) + ∆ · dnode(G,G′).

Therefore, by the definition of f∗H,∆, the value of the optimal integral solution of the dual linear
program is exactly equal to f∗H,∆(G).

From Lemma 4.5, we can say that f̂H,∆(G) ≤ f∗H,∆(G). Therefore, to prove the theorem, it
suffices to show that the integrality gap of the LP is almost k. So, let us consider an optimal
integral solution of the primal. Since it is an integral solution, all xh’s have values in {0,1} because
0 ≤ xh ≤ 1. We will now construct a feasible solution of the dual LP from this solution of the
primal and then try to bound the value of the optimal integral solution of the dual in terms of the
value of the optimal integral solution of the primal. Our algorithm to construct a feasible solution
of the dual LP from an optimal integral solution of the primal is:

In other words, assign:

∀v ∈ V, yv =

{
1, if the constraint corresponding to v is tight in x

0, otherwise

∀h ∈ SH , yh =

{
1, if xh = 1 and no constraint corresponding to the vertices of h is tight in x

0, otherwise

11



Input: An optimal integral solution x of the primal LP
Output: A feasible integral solution y of the dual LP

1 ∀h ∈ SH , assign yh = 0 ;
2 for every v ∈ V , do
3 if the constraint corresponding to v is tight in x, then
4 assign yv = 1;
5 else
6 assign yv = 0;
7 end

8 end
9 for every h = {v1, v2, ..., vk} ∈ SH , where xh = 1, do

10 if
k∑
i=1

yvi = 0, then

11 assign yh = 1;
12 end

13 end

Next, let us see why y is a feasible solution of the dual. For every copy h ∈ H where xh = 1, if
none of the constraints corresponding to its vertices are tight in x, yh = 1. Otherwise, for at least
one of its vertices v, yv = 1. Thus, the constraint in the dual corresponding to h and the vertices
of h is satisfied in y. For every copy h ∈ H where xh = 0, the only reason it is 0 because it has
at least one vertex v ∈ V for which the constraint in x is tight. Consequently, we have already set
yv = 1, thus satisfying the constraint in the dual corresponding to h and its vertices. Hence, y is
feasible as it satisfies all the constraints in the dual LP.

Now, let us see how large the value of y can be, compared to the value of x. The value of x is∑
h∈SH

xh. The value of y is
∑

h∈SH

yh + ∆ ·
∑
v∈V

yv. We will bound the value of the dual by “charging”

part of the dual objective to each copy h ∈ SH . So, we want to find a “charge” c(h) such that

Value of y =
∑
h∈SH

c(h) ≤ k
∑
h∈SH

xh

Specifically, for all h ∈ SH , set

c(h) =


0 if xh = 0

1 if xh = yh = 1

#{v contained in h : yv = 1} if xh = 1 and yh = 0

Lemma 4.6. Value of y =
∑

h∈SH

c(h).

Proof.

Value of y =
∑
h∈SH

yh + ∆ ·
∑
v∈V

yv (4)

12



Now, for every h ∈ SH such that yh = 1, we have c(h) = 1. Thus,∑
h∈SH

yh =
∑

h∈SH :yh=1

c(h) (5)

Also, by our construction,∑
h∈SH :yh=0

c(h) =
∑

h∈SH :yh=0

#{v contained in h : yv = 1}

⇒
∑

h∈SH :yh=0

c(h) = ∆ ·
∑
v∈V

yv. (6)

We can understand equation (6) as follows: For every v ∈ V such that yv = 1, the constraint
corresponding to v is tight in x. Thus, yv adds a “charge” of 1 to every copy h of H which contains
v and xh = 1. Therefore, every such v ∈ V adds a combined “charge” of exactly ∆ to the copies of
H.

Substituting the value of equations (5) and (6) in equation (4), we get the statement of the
lemma, as desired.

Lemma 4.7.
∑

h∈SH

c(h) ≤ k
∑

h∈SH

xh.

Proof. To prove the lemma, we will consider all the cases it covers. For every h ∈ SH :

1. if xh = 0 , then c(h) = 0 = xh

2. if xh = 1 and yh = 1, then c(h) = 1 = xh

3. if xh = 1 and yh = 0, then c(h) = (#v ∈ V contained in h s.t. yv = 1). As there are k
vertices in every copy of H, ⇒ c(h) ≤ k = k · xh

From the 3 cases above, we can say that
∑

h∈SH

c(h) ≤ k
∑

h∈SH

xh, as desired.

Let f̃(G) denote the value of the optimal integral solution of the primal. The value of the
optimal integral solution of the dual, f∗H,∆(G), is at most the value of y, which is the solution
constructed by us. Thus,

f∗H,∆(G) ≤ Value of y

=
∑
h∈SH

yh + ∆ ·
∑
v∈V

yv

=
∑
h∈SH

c(h) (From Lemma 4.6)

≤ k ·
∑
h∈SH

xh (From Lemma 4.7)

= k · f̃(G)

⇒
f∗H,∆(G)

k
≤ f̃(G)

13



Also, we know that the value of the optimal integral solution of the primal is at most f̂H,∆(G).

⇒
f∗H,∆(G)

k
≤ f̂H,∆(G)

4.3 Counting the number of edges in a graph

It is worth mentioning here that when H is an edge, that is, fH counts the number of edges in its
input, we can make use of flow graphs to efficiently get the solution to our linear program. We can
define a flow graph as follows:

Definition 4.8 (Flow graph [4]). Given an (undirected) graph G ∈ Gn such that G = (V,E);
let Vl = {vl|v ∈ V } and Vr = {vr|v ∈ V } be two copies of V , called the left and right copies,
respectively. Let D be a natural number less than n. The flow graph of G with parameter D, a
source s and a sink t is a directed graph on nodes Vl ∪ Vr ∪ {s, t} with the following capacitated
edges: edges of capacity D from the source s to all nodes in Vl and from all nodes in Vr to the sink
t, and unit-capacity edges (ul, vr) for all edges {u, v} ∈ E. Let vfl(G) denote half the value of the
maximum flow in the flow graph of G.

Kasiviswanathan et al. [4] showed that vfl is a Lipschitz extension for counting the number of
edges in a graph from GD to G. Thus, the value of the solution of the primal LP defined earlier is
the same as that of the flow graph, i.e., the value of f̂H,∆ is equal to vfl. The formulation into a
flow graph allows employing faster algorithms.

5 Connected components in a graph

Now, we look at the problem of counting the number of connected components in a graph. As the
addition/removal of a vertex from a graph can either increase or decrease the number of connected
components in it, we see that it is not a monotone function. For example, in a k-star, removing the
central vertex (which is connected to the k-vertices) increases the number of connected components
in it. However, the addition of an isolated vertex also has the same effect on it. Similarly, in a
graph with k isolated vertices, removing a vertex decreases the number of connected components
in it. However, adding a vertex which is connected to all the vertices in the graph also has the
same effect. Hence, to make our function monotone, we change it to be defined as

f(G) = n− c

where n is the number of vertices in G and c is the number of connected components in G. Note
that, f is a monotone function now, as the addition of a vertex to G can only result in either f
increasing or staying the same. Similarly, the removal of a vertex from G can only result in either
f decreasing or staying the same. Here, we require a monotone function because in such situations,
it is easier to get inferences from monotone functions.

14



The key observation here is that f(G) is the number of edges in the spanning forest of G. For
example, if G is a k-clique, f(G) = k − 1, which is the number of edges of its spanning tree. More
generally, if G is a graph on n vertices and has k connected components, then in the spanning forest
of G, every connected component of G forms a tree of length one less than the number of vertices
in that component. Thus, the number of edges in the spanning forest of G is equal to n− k, which
is equal to f(G).

The Lipchitz extension for f from GD to G can be given by the LP for finding a spanning forest
in D-bounded graphs, which can be defined as:

Maximize f̂ =
∑
e∈E

xe

subject to
∑

e: e is incident on v

xe ≤ D, ∀v ∈ V∑
e: e={u,v} and {u,v}⊆S

xe ≤ |S| − 1, ∀S ⊆ V s.t. |S| > 1

Lemma 5.1. f̂ is a Lipschitz extension of f from GD to G.

Proof. To prove the lemma, first we will prove that if a graph G is D-bounded, then f̂(G) = f(G).
Consider a spanning forest, S, of G, with k connected components. For the LP defined above,

assign all the variables xe = 1, ∀e ∈ E(S), where E(S) represents the edge-set of S. Clearly, this
solution is valid and has value equal to f(G). It is because, as G is D-bounded, its spanning forest
is also D-bounded. So, the first constraint is satisfied for all vertices in G. Also, every connected
component, C, in G, has |V (C)|−1 edges in its spanning tree, where V (C) represents the vertex-set
of C. Thus,

f̂(G) = No. of edges in spanning forest of G =
k∑
i=1

(|V (Ci)| − 1) = n− k = f(G)

We will now prove that the global node sensitivity of f̂(G) = D. When we add a node v with
some adjacent edges to G, it corresponds to adding |Ev(G)| variables to the LP defined on G
above, where Ev(G) is the set of edges connected to node v . Since we only add edges, the previous
maximum solution to the LP is a valid solution in the newly formed graph. So the value of f̂
cannot decrease. To see that it can increase by at most D, observe that in a solution of the LP,
every node can only be connected to at most D edges. Thus, if the value of f̂ increases by more
than D, removing v would give a value greater than the previous optimal value, thus arriving at
a contradiction. By symmetry, removing a node from G cannot increase the value of f̂ , and can
decrease it by at most D. Therefore, rewiring can change the value of f̂ by at most D.

Hence, we prove that f̂ is a Lipschitz extension of f from GD to G.

Lemma 5.2. ∀G ∈ G, f̂(G) ≤ f(G) .

Proof. If G is D-bounded, we have proved in Lemma 4.5 that f̂(G) = f(G).
If G is not D-bounded, then, at least one spanning forest of G is not D-bounded. As the

solution defined by the LP has to be in the form of a forest which is D-bounded, the number of

15



edges in the solution cannot be greater than the number of edges in the spanning forest of G. Thus,
f̂(G) ≤ f(G).

Hence, we prove that ∀G ∈ G, f̂(G) ≤ f(G) .

The optimal Lipschitz extension, f∗, can be defined as

f∗(G) = inf
g∈GD

(f(g) +D · dnode(G, g))

The dual for the LP defined above, can be given by:

Minimize D ·
∑
v∈V

yv +
∑

s⊆V s.t. |s|>1

(|s| − 1) · ys

subject to
∑

s:u,v∈S
ys + yu + yv ≥ 1, ∀e = {u, v} ∈ E

There have been attempts to bound the ratio of f∗ to f̂ , but so far they have not yielded any
conclusive results. Also, there are many interesting open questions related to this problem. Some
examples are:

1. Does f̂(G) = f(G) when the down sensitivity of G ≤ ∆?

2. Is there a way to generalize this problem to directed graphs?

6 Equivalences between terms from [1],[2] and [4]

Here, we present a (partial) list of terminologies which correspond to each other from [2] and [4]:

1. Linear query in [2] ⇐⇒ Generalized counting query where tuples, that are summed, get
assigned real numbers in [4]

2. Function X in [2] ⇐⇒ Lipschitz extension with parameter ∆̂ in [4]

3. ∆ in [2] ⇐⇒ Some approximation to the “best” setting of the Lipschitz parameter in [4]

4. ∆̂ in [2] ⇐⇒ Differentially private version of ∆ in [4]

The terminology used in [1] and [4] is almost the same.

References

[1] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analy-
sis of social networks via restricted sensitivity. CoRR, abs/1208.4586, 2012. URL
http://arxiv.org/abs/1208.4586.

16



[2] S. Chen and S. Zhou. Recursive mechanism: towards node differential privacy and unrestricted
joins. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 653–664, 2013. URL
http://doi.acm.org/10.1145/2463676.2465304.

[3] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In In Proceedings of the 3rd Theory of Cryptography Conference, pages 265–284.
Springer, 2006.

[4] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing graphs with
node differential privacy. In TCC, pages 457–476, 2013.

[5] W. Lu and G. Miklau. Exponential random graph estimation under differential
privacy. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, pages 921–930, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/2623330.2623683. URL
http://doi.acm.org/10.1145/2623330.2623683.

[6] D. Mir and R. N. Wright. A differentially private estimator for the stochastic kronecker
graph model. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, EDBT-ICDT
’12, pages 167–176, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1143-4. doi:
10.1145/2320765.2320818. URL http://doi.acm.org/10.1145/2320765.2320818.

[7] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In In STOC, pages 75–84. ACM, 2007.

[8] S. Raskhodnikova and A. D. Smith. Efficient lipschitz extensions for high-dimensional
graph statistics and node private degree distributions. CoRR, abs/1504.07912, 2015. URL
http://arxiv.org/abs/1504.07912.

[9] V. Rastogi and G. Miklau. Relationship privacy: Output perturbation for queries with joins.
In In ACM Symposium on Principles of Database Systems, 2009. [13] Yossi.

[10] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private network data release via
structural inference. In Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’14, pages 911–920, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/2623330.2623642. URL
http://doi.acm.org/10.1145/2623330.2623642.

17


